Contents
Download PDF
pdf Download XML
800 Views
373 Downloads
Share this article
Research Article | Volume 2 Issue 2 (July-Dec, 2021)
Comparison of Linear ROR Vs Nonlinear Weibull Model for COVID-19 in Iraq
 ,
 ,
 ,
 ,
1
Department of Hygiene and Epidemiology, XX Anniversary Policlinical, Santa Clara, Villa Clara, Cuba, 50100
2
Villa Clara Provincial Meteorological Center, Cuba, 50100
3
Faculty of Health Technology and Nursing, University of Medical Sciences of Villa Clara, Cuba, 50100
4
Veterinary Medicine of Career, Faculty of Veterinary Medicine and Zootechnic, Central University "Marta Abreu" of Las Villas, Villa Clara, Cuba, 50100
5
Veterinary Medicine of Career, Faculty of Veterinary Medicine and Zootechnic, Technical University of Manabí, Manabí, Ecuador, 130201
Under a Creative Commons license
Open Access
Received
May 30, 2021
Revised
June 15, 2021
Accepted
Oct. 10, 2021
Published
Oct. 20, 2021
Abstract

In different fields of study cumulative growth models over time have played and still play an important role. The objective of the research was to compare the Weibull model with the ROR methodology based on the cumulative number of new cases of COVID-19 that affected Iraq in the year 2020. The cumulative daily new cases of the COVID-19 pandemic were modeled, where a linear mathematical model was obtained through the methodology of Regressive Objective Regression (ROR), which explains the behavior of the same, depending on 15 days in advance and was compared with the non-linear Weibull model for the same data. With the linear ROR methodology, better results were obtained, since the variance explained was 100% and the F statistic was also higher, and the calculation of the Root Mean Square Error (RMSE) was improved by 72.38%; in addition, in six parameters the linear model outperformed the non-linear model. It is concluded that the cumulative cases of COVID-19 can be modeled with both models and even the cumulative cases of this new disease in the world can be predicted 15 days in advance by means of the mathematical modeling ROR, which allows reducing the number of dead, severe and critical patients for a better management of the pandemic, in spite of being the first time that a ROR model is applied to the processes of growth in the data with respect to time.

Keywords
None

Key findings:
The research compares the Weibull model with the ROR methodology for modeling the cumulative new COVID-19 cases in Iraq during 2020. The linear ROR method outperformed the non-linear Weibull model, with 100% variance explained, higher F statistic, and improved RMSE by 72.38%. Predictions 15 days in advance were feasible, aiding pandemic management despite ROR's novel application to time-dependent growth data.


What is known and what is new?
The abstract highlights the importance of cumulative growth models in various fields and introduces a novel comparison between the Weibull model and the Regressive Objective Regression (ROR) methodology for modeling COVID-19 cases in Iraq in 2020. While both models can predict cumulative cases, the ROR method, for the first time applied to growth data over time, outperforms the Weibull model, offering more accurate predictions and potential for better pandemic management.


What is the implication, and what should change now?
The implication of the research is significant, as it demonstrates the efficacy of the Regressive Objective Regression (ROR) methodology in predicting cumulative COVID-19 cases, offering potential for improved pandemic management. Moving forward, greater adoption and refinement of ROR models in analyzing growth data over time could enhance forecasting accuracy and aid in mitigating the impact of the pandemic.
 

INTRODUCTION:

The current situation that the planet is living in, due to the new coronavirus, is one more effect, derived from the bad  proceedings of anthropogenic activity, accumulated during thousands of years [1-3].


The novel coronavirus (2019-nCoV) identified on December 31, 2019 in Wuhan, China, currently officialized as SARS-CoV2, produces COVID-19. In addition, this virus is the first of its family to be declared a pandemic by the World Health Organization (WHO) on March 11, 2020 [4]. Global epidemiological studies of coronavirus  (CoV) over 15 years have shown that bats in Asia, Europe, Africa, America and Australia are reservoirs for a wide  variety of viruses, harboring and spreading these infectious agents quite easily, increasing their transmission capacity  [5-7]. According to the Research Group Mathematical Models in  Science and Technology: Development, Analysis, Numerical Simulation and Control (MOMAT) of the Institute of  Interdisciplinary Mathematics of the Complutense University of Madrid, Spain, the application of the Be-CoDiS  (Between-Countries Disease Spread) model in the analysis of the COVID-19 pandemic projected numerically that this  viral phenomenon would be present until July 2020 in the world [8], but reality has surpassed the  models.

 

Several models and methodologies have been  applied in the study, analysis and modeling of COVID 19 in the world, where they stand out: Ordinary  Differential Equation of First Order (EDOPO), linear  type; Simple linear Regression model; Generalized  Logistic Growth Model (GLM); Structured Susceptible Exposed-Infected-Removed (SEIR)/SEIR model; the  Bayesian Probability Mathematical Model; SIRD  model; Conceptual Model, the Simulation Model,  nonlinear models Gompertz, Richards and Weibull,  among many others [9-15]. By virtue of  this it is important to estimate the trend in the behavior  of the epidemiological curve of the COVID-19  pandemic [10, 13, 14, 16].


In different fields of study cumulative growth  models over time have played an important role, many  researchers have contributed to the knowledge of  relevant developed models [8,9,13-16]. There are some nonlinear models, among the  most common are: Gompertz, Weibull, negative  exponential, Richard's model (logistic, mono molecular), Brody, Mitcherlich, von Betalanffy, S Shaped, among others [9, 13]. There are about 77 known equations referring to  sigmoidal growth models, which are used in epidemics,  bioassays, agriculture, engineering fields, tree diameter,  forest height distribution [9]. Among  the most commonly used growth models are those of  Gompertz, Richard and Weibull. Their formulas can be  seen in detail in Ban (2021) [15], in this research a detailed  and brilliant mathematical description of them is made,  although the root mean squared errors (RMSE) are large  for nonlinear models. 


The aim of the present research was to compare the Weibull model, which is a nonlinear model with the  ROR methodology which is a linear model, as a  function of the cumulative number of new COVID-19  cases in Iraq. 
 

MATERIALS AND METHODS:

In carrying out the work, we used the data of the  cumulative new cases pandemic in Iraq, taken from the  article "Statistical modeling of the novel COVID-19  epidemic in Iraq", by Ban Ghanim Al-Ani, and  published in the journal "Epidemiol. Methods" in 2021,  and from which we were able to copy the data in  handwritten form and enter them into SPSS, for further  processing since the pandemic started (March 13, 2020,  until July 22, 2020). The forecast was performed with  the use of the Objective Regressive Regression (ORR)  methodology, which has been implemented in different  variables, such as viruses that have circulated in Villa  Clara province, Cuba [16]  and  particularly for COVID-19 in Cuba [17]. A short- and long-term forecast up to August 6,  2020 was performed with da

 
In the linear ROR methodology, we must first create  the dichotomous variables DS, DI and NoC, where:  NoC: Number of cases of the base (its coefficient in the  model represents the trend of the series). DS = 1, if  NoC is odd; DI = 0, if NoC is even, and vice versa. DS  represents a sawtooth function and DI this same  function, but in inverted form, so that the variable to be  modeled is trapped between these parameters and a  large amount of variance is explained, a detailed  explanation of which can be found in Fimia et al., (2020) [18]. 


The improvement index of both models (Weibull vs  ROR) was calculated using the SKILL_SCORE  formula, with a slight modification, since the Root  Mean Squared Error (RMSE) was added, instead of the  Mean Squared Error (MSE). All the data processing and  analysis work was carried out with the help of the SPSS  statistical package, Version 19, from IBM. 
 

RESULTS:

A summary of the linear ROR model obtained is shown, where 100 % of the variance is explained (Table  1). 

 

                                                                                                                                                           Table 1. Summary of Model c,d. 

Model

R

R squaredb

Adjusted R squared

Standard error of the estimate

Durbin-Watson

      

1

1.000a

1.000

1.000

178.924

1.124

a. Predictors: Lag1New, DS, DI, NoC, Lag15New.

b. For regression through the origin (the model without intercept), R-squared measures the proportion of the variability in the dependent variable about the origin explained by the regression. This CANNOT be compared to R-squared for models that include intercept.

c. Dependent variable: Cases-Iraq

d. Linear regression through the origin

The analysis of variance of the model was highly significant, with a Fisher's F of 1 020 727.429 significant at 100%  (Table 2). 

                                                                                                                                                                

                                                                                                                                                                        Table 2. ANOVAa,b. 

Model

Sum of squares

gl

Quadratic mean

F

Sig.

1

Regression

163387352764.683

5

32677470552.937

1020727.429

.000c

Residuo

3585557.317

112

32013.905

  

Total

163390938322.000d

117

   

a. Dependent variable: Cases-Iraq

b. Linear regression through the origin

c. Predictors: Lag1New, SD, DI, NoC, Lag15New

d. This total sum of squares is not corrected for the constant because the constant is zero for regression through the origin.


 

In Table 3, it can be seen that all the variables are  significant, the tendency of the disease is to increase  significantly at 100 %. The linear model depends on the data regressed on 15 days (Lag15New), and on the data  regressed on 1 day (Lag1New). 
                                                                                                                                                                      

                                                                                                                                                                    Table 3. Coefficientsa, b. 

 

Non-standardized coefficients

Coefficients standardized

t

Sig.

B

Standard error

Beta

  

1

DS

-181.845

59.741

-.003

-3.044

.003

DI

-181.722

59.460

-.003

-3.056

.003

Trend

5.237

1.091

.011

4.801

.000

Lag15News

-.106

.006

-.059

-16.789

.000

Lag1 News

1.087

.004

1.052

244.841

.000

a. Dependent variable: Cases-Iraq

b. Linear regression through the origin


                                                                                                       In Figure 1 we can see that the residuals do not differ from a normal distribution with zero mean and variance 0.983. 


                                                                                                                                     Figure 1. Histogram of the Standardized Residuals for the Linear ROR Model 
 

                                                                The modeling results show that the predicted values coincide with the real values of the pandemic, and the errors are  very small, close to zero (Figure 2).

                                                                                                                               Figure 2. Cumulative New Cases Forecast for Iraq According to ROR Linear Model

 

    The 15-day-ahead forecast is shown in Table 4, where a significant increase in cases can be seen. If the  trends of this model were to continue, and the pandemic  were not managed with severe measures, this would be  
    an unfavorable scenario for decision makers;  160873.71497 cases could have been reached by  August 6, 2020, according to the linear ROR model  only with the parameter lag15New. 
 

                                                                                                                                                                     Table 4. Case Summariesa 
 

                                                                                                                         Date Cases-Iraq Unstandardized Predicted Value Unstandardized Residual 

 

Date

Cases-Iraq

Unstandardized Predicted Value

Unstandardized Residual

1

13-MAR-2020

15

.

.

2

14-MAR-2020

29

.

.

3

15-MAR-2020

35

.

.

4

16-MAR-2020

56

.

.

5

17-MAR-2020

62

.

.

6

18-MAR-2020

73

.

.

7

19-MAR-2020

88

.

.

8

20-MAR-2020

109

.

.

9

21-MAR-2020

128

.

.

10

22-MAR-2020

161

.

.

11

23-MAR-2020

211

.

.

12

24-MAR-2020

241

.

.

13

25-MAR-2020

277

.

.

14

26-MAR-2020

353

.

.

15

27-MAR-2020

401

.

.

16

28-MAR-2020

442

336.26088

105.73912

17

29-MAR-2020

525

384.44873

140.55127

18

30-MAR-2020

590

479.37201

110.62799

19

31-MAR-2020

624

552.90016

71.09984

20

01-APR-2020

668

594.57252

73.42748

21

02-APR-2020

716

646.33854

69.66146

22

03-APR-2020

774

702.27172

71,72828

23

04-APR-2020

857

768.19259

88.80741

24

05-APR-2020

927

861.73826

65.26174

25

06-APR-2020

1018

939.42853

78.57147

26

07-APR-2020

1098

1038.38317

59.61683

27

08-APR-2020

1128

1127.25888

.74112

28

09-APR-2020

1175

1161.40513

13.59487

29

10-APR-2020

1214

1209.54336

4.45664

30

11-APR-2020

1248

1252.19875

-4.19875

31

12-APR-2020

1274

1289.91813

-15.91813

32

13-APR-2020

1296

1314.73678

-18.73678

33

14-APR-2020

1311

1336.87184

-25.87184

34

15-APR-2020

1330

1354.92872

-24.92872

35

16-APR-2020

1378

1376.02890

1.97110

36

17-APR-2020

1409

1428.46507

-19.46507

37

18-APR-2020

1435

1461.12270

-26.12270

38

19-APR-2020

1470

1485.94134

-15.94134

39

20-APR-2020

1498

1521.67435

-23.67435

40

21-APR-2020

1527

1547.81874

-20.81874

41

22-APR-2020

1573

1575.97153

-2.97153

42

23-APR-2020

1604

1628.14165

-24.14165

43

24-APR-2020

1659

1661.96496

-2.96496

44

25-APR-2020

1716

1722.96213

-6.96213

45

26-APR-2020

1743

1786.41864

-43.41864

46

27-APR-2020

1824

1818.36432

5.63568

47

28-APR-2020

1899

1909.17455

-10.17455

48

29-APR-2020

1981

1994.45008

-13.45008

49

30-APR-2020

2049

2086.66498

-37.66498

50

01-MAY-2020

2155

2160.83622

-5.83622

51

02-MAY-2020

2192

2277.86156

-85.86156

52

03-MAY-2020

2242

2320.67478

-78.67478

53

04-MAY-2020

2327

2376.41804

-49.41804

54

05-MAY-2020

2376

2471.18349

-95.18349

55

06-MAY-2020

2439

2526.47582

-87.47582

56

07-MAY-2020

2499

2595.42523

-96.42523

57

08-MAY-2020

2575

2662.45991

-87.45991

58

09-MAY-2020

2663

2744.58339

-81.58339

59

10-MAY-2020

2714

2839,29195

-125.29195

60

11-MAY-2020

2809

2897.21375

-88.21375

61

12-MAY-2020

2928

2996.98630

-68.98630

62

13-MAY-2020

3039

3123.72078

-84.72078

63

14-MAY-2020

3089

3240.77542

-151.77542

64

15-MAY-2020

3156

3293.26570

-137.26570

65

16-MAY-2020

3300

3359.95990

-59.95990

66

17-MAY-2020

3450

3517.89008

-67.89008

67

18-MAY-2020

3507

3680.71914

-173.71914

68

19-MAY-2020

3620

3739.01521

-119.01521

69

20-MAY-2020

3773

3861.74036

-88.74036

70

21-MAY-2020

3860

4026.69611

-166.69611

71

22-MAY-2020

4168

4120.00000

48.00000

72

23-MAY-2020

4365

4452.02493

-87.02493

73

24-MAY-2020

4528

4661.90455

-133.90455

74

25-MAY-2020

4744

4838.99947

-94.99947

75

26-MAY-2020

5031

5068.78562

-37.78562

76

27-MAY-2020

5353

5373.43202

-20.43202

77

28-MAY-2020

5769

5716.71852

52.28148

78

29-MAY-2020

6075

6168.86806

-93.86806

79

30-MAY-2020

6335

6499.42919

-164.42919

80

31-MAY-2020

6764

6772.08399

-8.08399

81

01-JUN-2020

7283

7227.52029

55.47971

82

02-JUN-2020

8064

7790.86365

273.13635

83

03-JUN-2020

8736

8632.75809

103.24191

84

04-JUN-2020

9742

9352.20163

389.79837

85

05-JUN-2020

10994

10441.37084

552.62916

86

06-JUN-2020

12262

11774.70607

487.29393

87

07-JUN-2020

13377

13136.94801

240.05199

88

08-JUN-2020

14164

14336.76366

-172.76366

89

09-JUN-2020

15310

15174.26372

135.73628

90

10-JUN-2020

16571

16394.62845

176.37155

91

11-JUNE-2020

17666

17736.01686

-70.01686

92

12-JUN-2020

18846

18887.28704

-41.28704

93

13-JUN-2020

20105

20142.34393

-37.34393

94

14-JUN-2020

21211

21488.37300

-277.37300

95

15-JUN-2020

22596

22649.97583

-53.97583

96

16-JUNE-2020

24150

24105.48962

44.51038

97

17-JUN-2020

25613

25716.65659

-103.65659

98

18-JUN-2020

27248

27240.72375

7.27625

99

19-JUN-2020

29118

28916.07451

20.92549

100

20-JUN-2020

30764

30820.98777

-56.98777

101

21-JUNE-2020

32572

32480.52868

91.47132

102

22-JUN-2020

34398

34332.58111

65.41889

103

23-JUNE-2020

36598

36238.70922

359.29078

104

24-JUN-2020

39035

38513.48397

521.51603

105

25-JUN-2020

41089

41033.38872

55.61128

106

26-JUN-2020

43158

43154.90192

3.09808

107

27-JUN-2020

45298

45283.46494

14.53506

108

28-JUN-2020

47047

47481.05986

-434.05986

109

29-JUN-2020

49005

49269.70352

-264.70352

110

30-JUNE-2020

51420

51256.15708

163.84292

111

01-JUL-2020

53604

53721.10405

-117.10405

112

02-JUL-2020

55916

55944.89825

-28.89825

113

03-JUL-2020

58250

58289.32603

-39.32603

114

04-JUL-2020

60375

60633.00348

-258.00348

115

05-JUL-2020

62171

62773.04268

-602.04268

116

06-JUL-2020

64597

64538.61685

58.38315

117

07-JUL-2020

67338

66986.69427

351.30573

118

08-JUL-2020

69508

69737.71031

-229.71031

119

09-JUL-2020

72356

71842.83116

513.16884

120

10-JUL-2020

75090

74725.60144

364.39856

121

11-JUL-2020

77402

77482.64824

-80.64824

122

12-JUL-2020

79631

79773.80521

-142.80521

123

13-JUL-2020

81653

82015.95187

-362.95187

124

14-JUL-2020

83863

84011.23685

-148.23685

125

15-JUL-2020

86144

86162.15917

-18.15917

126

16-JUL-2020

88167

88414.96410

-247.96410

127

17-JUL-2020

90216

90373.57843

-157.57843

128

18-JUL-2020

92526

92358.36103

167.63897

129

19-JUL-2020

94689

94648.69001

40.30999

130

20-JUL-2020

96803

96814.37438

-11.37438

131

21-JUL-2020

99000

98859.80270

140.19730

132

22-JUL-2020

101258

100962.29504

295.70496

133

23-JUL-2020

.

103191.34418

.

134

24-JUL-2020

.

118206.33323

.

135

25-JUL-2020

.

122244.11662

.

136

26-JUL-2020

.

125597.27251

.

137

27-JUL-2020

.

128932.37848

.

138

28-JUL-2020

.

131882.01664

.

139

29-JUL-2020

.

135190.68524

.

140

30-JUL-2020

.

138500.70648

.

141

31-JUL-2020

.

141549.17571

.

142

01-AUG-2020

.

144536.38277

.

143

02-AUG-2020

.

147984.19541

.

144

03-AUG-2020

.

151130.02668

.

145

04-AUG-2020

.

154305.11699

.

146

05-AUG-2020

.

157498.25724

.

147

06-AUG-2020

.

160873.71497

.

Total

N

147

132

132

117

a. Limited to the first 200 cases.

                                                                                                                                                   Total N 147 132 132 117 a. Limited to the first 200 cases.

 

Table 5 shows the results for both models, with a set  of statistical parameters, the F statistic of the linear  ROR model, as well as six other parameters show better results than the nonlinear Weibull model; however, both  linear and nonlinear models can be used in the  modeling and prediction of this disease. 

 

                                                                                                                                                          Table 5. Comparison of Linear ROR and Nonlinear Weibull Model

                                                                                                                                                               

                                                                                                                                                                            

Criterion

Nonlinear  Weibull model

Linear model ROR

F

97 393.322

1 020 727.429

RMSE

647.619

178.924

BIAS

0.000

0.000

MAE

531.753

118.5490

AIC

1711.894

1432.64

AICC

1712.207

7760.64

BIC

1723.425

1765.81

WIC

1725.274

1215.15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Weibull results were taken from the article "Statistical modeling of the novel COVID-19 epidemic in Iraq", by Ban  Ghanim Al-Ani, 2020. https://doi.org/10.1515/em-2020-0025.[15].

Finally, the rate of improvement of one model over another was calculated as follows, which is nothing more than the  modeling SKILL. 
SKILL _ SCORE = 1 – RMSE Model to verify 
RMSE Model to established  
 

Here a slight modification was made to the Wilks (1987) [19] formula, adding the RMSE instead of the MSE  according to the original formula, obtaining that the  established model is the Weibull model and the model  to be tested, the ROR; the improvement was 72.38 %,  so we can affirm for this case that the linear model  outperforms a nonlinear model, at least for the  cumulative cases studied of COVID-19 in Iraq. 

 


                      

DISCUSSION:

In the summary shown in table 1, 100 % of the  variance is explained with an error of 178.9 cases, as it  is a model used for short term, the Durbin Watson  statistic is small, which allows introducing in the future  model more independent variables if necessary,  nevertheless, the model obtained yielded good results,  which is in agreement with results obtained in other  studies, with different infectious entities, including  COVID-19 [20-22].
The trend of the disease was increasing, where a  cumulative 160 873.7 cases could be reached until  August 6, 2020 according to the linear ROR model, so  these results in terms of trend, coincide with those  obtained for that pandemic in Cuba [20-21].
The linear ROR model outperformed the non-linear  Weibull model by 72.38 %, but this does not mean  absolutely, since it is only one study; moreover, both  models offer very good possibilities for use in COVID 19 modeling, so they constitute excellent tools for  pandemic monitoring, analysis and prediction [11,12,15], with a high level of application in many fields  and/or areas of science [23-25]. On the other hand, it is the first time that a ROR model is  applied to growth processes in data with respect to time,  so that certain steps of progress are being made in  mathematical modeling, in terms of COVID-19, which  in itself, is an epidemic of paradoxes [26].  By virtue of everything analyzed in this research, it is  important to estimate the trend in the behavior of the  epidemiological curve of the pandemic, because in  truth, we do not yet know whether the virus will  become endemic, recurrent year after year, or will  finally be controlled [26-29].
 

CONCLUSIONS

The ROR mathematical modeling showed better  results than the Weibull model, since the F statistic, as  well as six other parameters showed better results than  the non-linear Weibull model; however, both linear and  non-linear models show good results in the modeling and prediction of COVID-19, which despite being a  new disease in the world can be predicted 15 days in  advance using the ROR methodology, and thus reduce  the number of dead, severe and critical patients for better management of the pandemic. 


Funding: No funding sources.


Conflict of interest: None declared.


Ethical approval: The study was approved by the Institutional Ethics Committee of University of Medical Sciences of Villa Clara.

 

REFERENCES
  1. Álvarez, Vicente Berovides, and José L. Gerhartz. Diversidad de la vida y su conservación. Nuevo Milenio, 2009. https://books.google.com/books?hl=en&lr=&id=Rb6kDwAAQBAJ&oi=fnd&pg=PT2&dq=1.%09Berovides,+A.+V.,+%26+Gerhartz,+J.+L.+(2007).++Diversidad+de+la+vida+y+su+conservaci%C3%B3n.+Editorial++Cient%C3%ADfico+T%C3%A9cnica.+98.+%E2%80%8F%E2%80%8F%E2%80%8F&ots=ADD48oyMr8&sig=nB_lvxD_2TLO1tvNBqcG87UxU3Y 
  2. Fimia-Duarte, Rigoberto. "Age prediction for COVID-19 suspects and contacts in Villa Clara province, Cuba." EC Veterinary Science 6.4 (2021): 41-51. https://ecronicon.net/assets/ecve/pdf/ECVE-06-00379.pdf 
  3. Sun, Zhong, et al. "Potential factors influencing repeated SARS outbreaks in China." International journal of environmental research and public health 17.5 (2020): 1633. https://www.mdpi.com/1660-4601/17/5/1633/htm?luicode=10000011&lfid=231522type%3D1%26t%3D10%26q%3D%23%E4%B8%96%E5%8D%AB%E7%BB%84%E7%BB%87%E5%B7%A5%E4%BD%9C%E4%BA%BA%E5%91%98%E5%9C%A8%E4%BC%8A%E6%9C%97%E6%84%9F%E6%9F%93%E6%96%B0%E5%86%A0%E7%97%85%E6%AF%92%23&featurecode=newtitle%E7%9C%8B%E8%B5%B7&u=https%3A%2F%2Fwww.mdpi.com%2F1660-4601%2F17%2F5%2F1633%2Fhtm
  4. WHO (World Health Organization). (2020). Draft  landscape of COVID-19 candidate vaccines. 2020.  In:  
  5. https://www.who.int/blueprint/prioritydiseases/key action/novel-coronaviruslandscape-ncov 
  6. Fan, Yi, et al. "Bat coronaviruses in China." Viruses 11.3 (2019): 210. https://doi: 10.1007/s11606020-05762- w. 
  7. Wang, Ben X., and Eleanor N. Fish. "Global virus outbreaks: Interferons as 1st responders." Seminars in immunology. Vol. 43. Academic Press, 2019. https://doi.org/10.1016/j.smim.2019.101300 
  8. Woo, Patrick CY, and Susanna KP Lau. "Viruses and bats." Viruses 11.10 (2019): 884. https://www.mdpi.com/1999-4915/11/10/884 
  9. Ivorra, Benjamin, and Angel M. Ramos. "Validation of the forecasts for the international spread of the coronavirus disease 2019 (COVID-19) done with the Be-CoDiS mathematical model." ResearchGate Preprint 28 (2020): 1-7..  https://www.doi.org/10.13140/RG.2.2.31460.94081 
  10. Dagogo, Joseph, Ethelbert Chinaka Nduka, and Uchenna Petronilla Ogoke. "Comparative analysis of richards, gompertz and weibull models." IOSR Journal of Mathematics 16.1 (2020): 15-20. https://www.researchgate.net/profile/Uchenna-Ogoke/publication/359107899_Comparative_Analysis_of_Richards_Gompertz_and_Weibull_Models/links/6234ac7572d413197a32087a/Comparative-Analysis-of-Richards-Gompertz-and-Weibull-Models.pdf 
  11. Morera, Noira Durán, and Emilia Botello Ramírez. "Detection of emerging active clusters with high incidence rates, for rapid surveillance of COVID-19." Medicentro 24.3 (2020): 643-656. https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=104344 
  12. Koo, Joel R., et al. "Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study." The Lancet Infectious Diseases 20.6 (2020): 678-688. https://www.thelancet.com/journals/lancet/article/PIIS1473-3099(20)30162-6/fulltext 
  13. Vilches, M.C. (2020). COVID-19: Modelos de  pronósticos para Villa Clara, Cuba. Vanguardia. 8. 
  14. Zhao, Shilei, and Hua Chen. "Modeling the epidemic dynamics and control of COVID‐19 outbreak in China." Quantitative biology 8.1 (2020): 11-19. https://onlinelibrary.wiley.com/doi/abs/10.1007/s40484-020-0199-0 
  15. Zhao, Shi, et al. "Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak." International journal of infectious diseases 92 (2020): 214-217.  https://doi.org/10.1016/j.ijid.2020.01.050
  16. Al-Ani, B. G. (2021). Statistical modeling of the  novel COVID-19 epidemic in Iraq. Epidemiologic  Methods10(s1).
  17. Min, Lequan. "Modelling, Simulations and Analysis of the First and Second COVID-19 Epidemics in Beijing." medRxiv (2021): 2021-07. https://doi.org/10.1101/2021.07.04.21259205 
  18. Sánchez-Álvarez, M. L., et al. "La Regresión Objetiva Regresiva más allá de un ruido blanco para los virus que circulan en la provincia Villa Clara, Cuba." ABSTRACT BOOK del VI Congreso Internacional de Parasitología Neotropical (VI COPANEO)" Impacto del Cambio Climático en las Enfermedades Parasitarias". Lima: The Biologis. 2017.  http://sisbib.unmsm.edu.pe/BVRevistas/biologist/bi ologist.htm
  19. Rodríguez, Ricardo Osés, et al. "Forecast of New and Deceased Cases of COVID-19 in Cuba with an Advance of 105 Days." Acta Scientific Veterinary Sciences (ISSN: 2582-3183) 3.7 (2021). https://www.researchgate.net/profile/Rigoberto-Fimia-Duarte/publication/352767127_Forecast_of_New_and_Deceased_Cases_of_COVID-19_in_Cuba_with_an_Advance_of_105_Days/links/60df946e92851ca944a3035e/Forecast-of-New-and-Deceased-Cases-of-COVID-19-in-Cuba-with-an-Advance-of-105-Days.pdf 
  20. González, Ramón González. "La entomofauna de culícidos y los copépodos abordados desde las alternativas de control biológico hasta la modelación matemá-tica en dos provincias centrales de Cuba." Anales de la Academia de Ciencias de Cuba; Vol 10.3 (2020). https://www.researchgate.net/profile/Rigoberto-Fimia-Duarte/publication/345120634_CIENCIAS_BIOMEDICAS/links/5f9dcb74a6fdccfd7b907be9/CIENCIAS-BIOMEDICAS.pdf 
  21. Wilks, Daniel S. Statistical methods in the atmospheric sciences. Vol. 100. Academic press, 2011. https://books.google.com/books?hl=en&lr=&id=IJuCVtQ0ySIC&oi=fnd&pg=PP2&dq=19.%09Wilks,+S.+D.+(1987).+Statistical+Methods+in+the++Atmospheric+Sciences.+An+introduction.++Internacional+Geophysics+Series,+59,+255-+256.+%E2%80%8F%E2%80%8F%E2%80%8F&ots=aqGmrNAQLX&sig=ToSE1UOZlefandjQBwaWm9lIOQQ.
  22. Osés, R. R., D. R. Fimia, and M. A. Pedraza. "Regressive methodology (ROR) VERSUS Genetic Code in mutations of VIH." International Journal of Agriculture Innovations and Research 3.6 (2015): 2319-1473.
  23. Osés-Rodríguez, R. I. C. A. R. D. O., et al. "The ROR's methodology an it's possibility to find information in a white noise." International Journal of Current Research 9.3 (2017): 47378-82. Website home page:  www.journalcra.com  
  24. Rodríguez, Ricardo Osés, et al. "Pronostico de la covid-19 por medio de la metodología de regresión objetiva regresiva en Villa Clara y Cuba." The Biologist 18.2 (2020): 171-184. https://dialnet.unirioja.es/servlet/articulo?codigo=9398050 
  25. Mahanta, Dimpal Jyoti, and Munindra Borah. "Parameter estimation of Weibull growth models in forestry." International Journal of Mathematics Trends and Technology-IJMTT 8 (2014). https://ijmttjournal.org/archive/ijmtt-v8p521 
  26. Archontoulis, Sotirios V., and Fernando E. Miguez. "Nonlinear regression models and applications in agricultural research." Agronomy Journal 107.2 (2015): 786-798. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj2012.0506 
  27. Chowell, Gerardo. "Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts." Infectious Disease Modelling 2.3 (2017): 379-398. https://www.sciencedirect.com/science/article/pii/S2468042717300234 
  28. Horton, Richard. The COVID-19 catastrophe: What's gone wrong and how to stop it happening again. John Wiley & Sons, 2021. https://books.google.com/books?hl=en&lr=&id=ZIIUEAAAQBAJ&oi=fnd&pg=PT3&dq=Horton,+R.+(2020).+The+COVID-19+Catastrophe.++What%27s+Gone+Wrong+and+How+to+Stop+It+Happening++Again%3F+Cambridge:+Polity+Press,+134.+ISBN:+978-+1-5095-4645-9.++%E2%80%8F%E2%80%8F%E2%80%8F&ots=vZag13bDJT&sig=4-_ff27IluLx-QDnWakMtngheOk 
  29. Nomier, Yousra A., et al. "Distinctive Therapeutic Strategies against Corona Virus19 (COVID-19): A Pharmacological Review." Systematic Reviews in Pharmacy 11.9 (2020). https://www.researchgate.net/profile/Yousra-Nomier/publication/349752835_Distinctive_Therapeutic_Strategies_against_Corona_Virus-_19_COVID-19_A_Pharmacological_Review/links/603ffdab4585154e8c7510fe/Distinctive-Therapeutic-Strategies-against-Corona-Virus-19-COVID-19-A-Pharmacological-Review.pdf 
  30. Moore, John P., and Paul A. Offit. "SARS-CoV-2 vaccines and the growing threat of viral variants." Jama 325.9 (2021): 821-822.  DOI:10.1001/jama.2021.111 11.  
  31. Chowdhury, Apu, et al. "A secondary approach with conventional medicines and supplements to recuperate current COVID-19 status." Biomedicine & Pharmacotherapy 142 (2021): 111956. https://doi.org/10.1016/j.biopha.2021.111956 
Advertisement
Recommended Articles
Research Article
Hyperlipidemia is a Risk Factor for Patients Suffering from Thrombophlebitis: A Finding from an Analytical Cross-Sectional Study Conducted in a Medical College in the Foothills of Western Himalayas
Published: 10/10/2022
Download PDF
Original Article
Role of Audits in Helathcare associated Infections
Published: 20/06/2024
Download PDF
Review Article
Hospital-Acquired Infections: Comprehensive Insights into Epidemiology, Pathophysiology, Risk Factors, Diagnosis, and Treatment
Published: 30/06/2024
Download PDF
Case Report
Insulin Autoimmune Hypoglycaemia: A Case Report and Review of Literature
Published: 30/07/2024
Download PDF
Chat on WhatsApp
Flowbite Logo
Najmal Complex,
Opposite Farwaniya,
Kuwait.
Email: kuwait@iarcon.org

Editorial Office:
J.L Bhavan, Near Radison Blu Hotel,
Jalukbari, Guwahati-India
Useful Links
Order Hard Copy
Privacy policy
Terms and Conditions
Refund Policy
Others
About Us
Contact Us
Online Payments
Join as Editor
Join as Reviewer
Subscribe to our Newsletter
Follow us
MOST SEARCHED KEYWORDS
scientific journal
 | 
business journal
 | 
medical journals
 | 
Scientific Journals
 | 
Academic Publisher
 | 
Peer-reviewed Journals
 | 
Open Access Journals
 | 
Impact Factor
 | 
Indexing Services
 | 
Journal Citation Reports
 | 
Publication Process
 | 
Impact factor of journals
 | 
Finding reputable journals for publication
 | 
Submitting a manuscript for publication
 | 
Copyright and licensing of published papers
 | 
Writing an abstract for a research paper
 | 
Manuscript formatting guidelines
 | 
Promoting published research
 | 
Publication in high-impact journals
Copyright © iARCON Internaltional LLP . All Rights Reserved.