Contents
Download PDF
pdf Download XML
109 Views
66 Downloads
Share this article
Research Article | Volume 5 Issue 1 (Jan-June, 2024) | Pages 1 - 43
Assessing the Therapeutic and Health Benefits of Commercialized Herbal Teas Sold in Supermarkets, Drugstores, and Entrepreneurs through Radios
 ,
 ,
1
Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology, Tibanga, Iligan City, Philippines, 9200
2
School of Interdisciplinary Studies/Institute of Peace and Development in Mindanao, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines, 9200
3
Center for Integrative Health, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines, 9200
Under a Creative Commons license
Open Access
Received
Jan. 9, 2024
Revised
Jan. 19, 2024
Accepted
April 15, 2024
Published
May 30, 2024
Abstract

An assessment of the therapeutic and health benefits of commercialized herbal teas available in various supermarkets, and drugstores, and advertised by entrepreneurs through radios in Iligan City was done. Sixty-five (65) herbal teas were found commercially sold and were found to contain ninety-eight (98) plant species as ingredients prepared individually or in groups. These teas have been claimed to be therapeutic. Camellia sinensis, Rosa rubiginosa, and Jasminum sambac Linn., were the most used plants in herbal teas, and argued to contain micronutrients like polyphenols. These are naturally active substances responsible for biological actions that treat human ailments. Diabetes, heart disease, and mental health were the most frequently listed health problems addressed by the tea products. Leaves were the most widely used plant part in the teas. Flavonoids, phenolic compounds, and alkaloids are the predominant bioactive constituents that were reported in the plants. Assessment of the individual properties of each of the plant species shows specific therapeutic functions, associated with the component bioactive compounds. While commercialized herbal teas sold have no approved therapeutic claims these were very popular with many users due to convincing marketing, especially through social media and radio. It was argued however that more investigations into the bioactive components found not only in each plant utilized as an ingredient but also when mixed to determine interactions of component compounds from each plant species and any potential toxicity or adverse reactions to users. 

 

Keywords
Important Note:

Key findings:

Key findings include: the assessment of 65 commercially sold herbal teas in Iligan City containing 98 plant species, with Camellia sinensis, Rosa rubiginosa, and Jasminum sambac Linn. being the most used plants; teas claimed to address health issues like diabetes, heart disease, and mental health; emphasis on bioactive compounds like flavonoids and phenolic compounds for therapeutic effects.

 

What is known and what is new?

The known aspect is the therapeutic and health benefits of herbal teas. The new contribution is the assessment of commercialized herbal teas in Iligan City, identifying 65 teas with 98 plant species, and highlighting the most used plants, their bioactive compounds, and potential therapeutic functions, emphasizing the need for further research on interactions and potential toxicity.

 

What is the implication, and what should change now?

The implication is that while commercialized herbal teas are popular, more research is needed on the interactions and potential toxicity of their bioactive compounds. Changes needed include stricter regulations on therapeutic claims, and further investigations into the safety and efficacy of herbal tea ingredients, both individually and in combination, to ensure consumer safety.

INTRODUCTION:

Plants are known to have phytonutrients, which are bioactive compounds considered beneficial to human health. For many decades it remained the basis for the development of modern drugs to treat numerous forms of diseases all over the world [1]. As an efficient natural remedy for any ailment, commercialized plant-based products were developed such as tea, and became widespread when commercialized in the market. 

 

Tea, caffeine-free, is currently the most popular beverage worldwide after water. They are known to be reliable, dependable, simple to use, affordable, and believed to be safer than synthetic drugs. These factors helped to expand the popularity of these teas and make them a crucial nutritional component. Teas are made from different plant parts, such as leaves, herbs, fruits, blooms, roots, etc. They are known for their abundant number of antioxidants such as polyphenols, polysaccharides, and amino acids, and have become popular as a healthy beverage for lowering obesity, cancer, liver, and cardiovascular problems [2].

 

However, a previous study described a patient who experienced acute liver failure after drinking an herbal detox tea that was marketed as being hepatoprotective. Six components of the aforementioned tea were linked to hepatotoxicity in one or more published studies [3]. Although tea polyphenols may have health benefits for people, they can cause fat to accumulate by encouraging fat cell growth and extending fat cell sizes, which results in nutritional obesity [4]. In addition, excessive use of the laxative senna in pharmaceutical preparations causes finger clubbing. This was first described by Silk and colleagues in 1975, and the same case was again described by Rashiq and others in 1996 [5-6]. For these reasons, the level of heavy metal contamination in herbal products has raised serious concerns about their safety and quality. Thus, the study's objectives were to assess the commercialized herbal teas available in various stores, drugstores, and those advertised on radios in Iligan City, to record all plant species as ingredients present including their therapeutic claims. Data mining of reported ethnopharmacological and biochemical components and functions in the plants was also gathered to determine the possible safety and efficacy of the specified herbal teas. 

METHOD:

2.1 Tea Samples and Data Collection

A total of 65 tea samples (local and imported tea products) were collected in various stores, and drugstores in Iligan City were documented.  Plant species with their scientific names as an ingredient, plant parts used, and therapeutic claims of each tea product were noted. The plant’s family and scientific names were also recorded.  

 

2.2 Data Mining

A systematic literature review was conducted to identify and analyze research articles and publications from PubMed, Google Scholar, ScienceDirect, and ResearchGate databases pertinent to the medicinal plants used as an ingredient in herbal teas. In addition, a thorough literature review was conducted to identify the bioactive compounds of each medicinal plant and to assess their corresponding biological activities.

RESULTS AND DISCUSSION:

 Due to the public's increased interest in using herbal medicines, herbal teas are becoming more and more popular among consumers [12]. Of the total 64 herbal teas collected, 98 medicinal plant species were observed to be constituents either individually or mixed to treat different ailments/ diseases (Table I). These plant species belong to 47 different families namely: Actinidiaceae, Anacardiaceae, Annonaceae, Apiaceae, Apocynaceae, Arecaceae, Asteraceae, Bignoniaceae, Boraginaceae, Bromeliaceae, Cactaceae, Caprifoliaceae,  Caricaceae Caryophyllaceae, Costaceae, Clusiaceae, Cucurbitaceae Ericaceae, Euphorbiaceae, Fabaceae, Ginkgoaceae,  Grossulariaceae, Lamiaceae, Lauraceae, Lythraceae, Malvaceae, Moringaceae, Myrtaceae, Nelumbonaceae, Oleaceae, Paeoniaceae, Pandanaceae, Passifloraceae, Phyllantaceae,  Poaceae, Polygonaceae, Punicaceae, Rosaceae, Rubiaceae, Rutaceae, Sapindaceae, Solanaceae, Theaceae, Urticaceae, Vitaceae, Viticaceae and Zingiberaceae.  

 

Table 1. Commercialized Herbal Tea Plants Sold in Iligan City

No.Product’s NameMedicinal PlantsPlant Part UsedTherapeutic claims
1

TWININGS OF LONDON (GREEN TEA Earl Grey)

 

Camellia sinensis

Monarda didyma L.

leaves

 

Support heart health and prevent serious cardiovascular diseases such as heart attacks and high blood pressure

 

2

TWININGS OF LONDON (GREEN TEA Jasmine)

 

Camellia sinensis

Jasminum sambac Linn.

leaves, flowers

 

Lower your risk of heart disease, mental decline, and certain cancers

 

3

TWININGS OF LONDON (GREEN TEA & Lemon)

 

Camellia sinensis            

Citrus limon

leaves, fruit

 

 Reduces your risk of stroke or heart attack

 

4

TWININGS OF LONDON (Pure Camomile)

 

Matricaria recutita

flower

 

Digestive upset, Wound healing, Generalized anxiety disorder (GAD), depression

 

5

ABS HERBS (Sambong Tea)

 

Blumea balsamifera

leaves

 

Treat wounds and cuts, rheumatism, anti-diarrhea, anti-spams, colds and coughs

 

6

RITA RITZ (Lolo Jose's Banaba Tea)

 

Lagerstroemia speciosa

leaves

 

Diabetes, kidney failure, obesity, constipation, kidney inflammation, and urinary dysfunctions

 

7

RITA RITZ (Guyabano Fruit Tea)

 

Annona muricata

 

fruit and leaves

 

Cure for diabetes because it helps improve the body’s tolerance for glucose and hyperlipidemia

 

8

RITA RITZ (Lagundi Herbal Tea)

 

Vitex negundo

 

leaves

 

Asthma, coughs, and body pain

 

 

9

THE GOOD HARVEST Dried Fruit and Tea Infusions (Crimson glory, Lemon, Jasmine)

 

Vitis coignetiae                

Citrus limon                   

Jasminum sambac Linn.

fruit and flowers

 

Relaxation

 

10

THE GOOD HARVEST Dried Fruit and Tea Infusions (Hibiscus, Rose, White Dragon Fruit)

 

Hibiscus                             

Rosa                              Selenicereus undatus

 

fruit and flowers

 

Relaxation

 

11

THE GOOD HARVEST Dried Fruit and Tea Infusions (Papaya, Grapefruit, Jasmine)

 

Carica papaya                  

Vitis vinifera                 

 Jasminum sambac Linn

fruit and flowers

 

Relaxation

 

12

THE GOOD HARVEST Dried Fruit and Tea Infusions (Pineapple, Date, Rose)

 

Ananas comosus         

 Phoenix dactylifera                Rosa

 

fruit and flowers

 

Relaxation

 

13

THE GOOD HARVEST Dried Fruit and Tea Infusions (Pear, Melon, Black Goji)

 

Pyrus communis        

Cucumis melo                 

Lycium ruthenicum

fruit

 

Relaxation

 

14

THE GOOD HARVEST Dried Fruit and Tea Infusions (orange peel, red dragon fruit, pear slice)

 

Citrus sinensis        

 Selenicereus undatus           

Pyrus communis

fruit

 

Relaxation

 

15

THE GOOD HARVEST Dried Fruit and Tea Infusions (Jasmine, White Dragon fruit, Kiwi)

 

Jasminum sambac Linn     Hylocereus undatus           Actinidia deliciosa

flower and fruit

 

Relaxation

 

16

THE GOOD HARVEST Flower FruitT Mix Tea (Roselle, Sugared Hawthorn, Apple, Melon, Pineapple, Lemon and Cherry)

 

Hibiscus sabdariffa         Crataegus monogyna    

 Malus domestica          

Cucumis melo                                    Ananas comosus           

Citrus limon                                   Prunus avium 

 

flower and fruit

 

High in vitamin C, rich in antioxidants

 

17

THE GOOD HARVEST Blue Butterfly Pea Tea

 

Clitoria ternatea

 

flower

 

 
18

THE GOOD HARVEST Lavender Flower Tea

 

Lavandula angustifolia

 

flower

 

Improve mood disorders, help with anxiety, depression, and fatigues, boost sleep, soothe menstrual cramping

 

19

THE GOOD HARVEST Genmaicha Tea

 

Oryza sativa               

Camellia sinensis

 

leaves and fruit

 

Good for the heart health

 

20

THE GOOD HARVEST Marigold Calendula Flower Tea

 

Calendula officinalis

flower

 

Antioxidants, have antifungal and antimicrobial properties, support oral health, regulate menstrual cycle, boost heart health

 

21

THE GOOD HARVEST Longan Tea

 

Dimocarpus longan

 

fruit

 

Anti-inflammatory, helps strengthen the liver, spleen, and kidneys, relaxing and calming to help ease anxiety

 

22

THE GOOD HARVEST Kumquat Fruit Tea

 

Citrus japonica

 

fruit

 

Aids in digestion helps balance blood sugar, rich in antioxidants, helps rid of free radicals that cause stress and aging to the body

 

23

RITA RITZ Pito-Pito Dried Herbal tea

 

Lagerstroemia speciosa      Psidium guajava            

Mangifera indica    

Pandanus amaryllifolius                Centella asiatica                       Pimpinella anisum                                                                                                                                                                                                  Premna odorata

 

Leaves, seeds

Lowering blood sugar, healthy gums and aids the symptoms of loose bowels, antibacterial, pain reliever, healing of wounds, relax the muscles, produces gastric protection, aids the digestive system, cure tuberculosis

 

24

HERBAL SLIMMING TEA (Peach Apricot) with Senna leaves

 

Prunus persica                 

Prunus armeniaca     

Cassia angustifolia 

 

Fruit, leaves

 

Support cleansing and thermogenic activity within the body helping to promote the elimination and storage of excess calories

 

25

HERBAL SLIMMING TEA (Cranraspberry) with Senna leaves

 

Vaccinium macrocarpon    

Rubus idaeus               

Cassia angustifolia 

 

Fruit, leaves

 

Support cleansing and thermogenic activity within the body helping to promote the elimination and storage of excess calories

 

26

MY MARVEL Taheebo Herbal Tea

 

Tabebuia avellanedae 

 

inner bark 

 

Promote strength and vitality, help boost immunity

 

27

Bignay Tea

 

Antidesma bunius 

 

fruit

 

Antioxidant, promotes colon health and weight loss, UTI, liver health, regulation of blood pressure, eye health, skin rejuvenation, prevents anemia, helps flushing out uric acid, urea, toxin, and prevent stone formation in the kidney

 

28

Red Alingatong Roots Herbal Tea

 

Urtica Dioica 

 

roots

 

Kidney stone, uric acid, kidney disorders, lowers creatinine, UTI, gallstone, prostate enlargement, high blood pressure, rheumatoid arthritis, diabetes, gout, insomnia, prostate enlargement

 

29

ALOKOZAY Rooibos Tea

 

Aspalathus linearis

 

leaves

 

Antioxidants

 

30

ALOKOZAY Thyme Tea

 

Thymus vulgaris

 

leaves

 

Increase memory, prepare the body for sleep and even bring luck

 

31

ALOKOZAY Pomegranate Tea

 

Punica granatum

 

fruit

 

Promote heart health, reduce inflammation, slow down osteoarthritis and lessen joint pains

 

32

ALOKOZAY Fennel Tea

 

Foeniculum vulgare

 

flower 

 

 Improve digestive health

 

33

ALOKOZAY Black Currant Tea

 

Ribes nigrum

 

fruit

 

Rich in antioxidants, iron and potassium, regulating blood pressure, increasing fat oxidation, and promoting skin health

 

34

MVPM Insulin Plant Herbal tea

 

Chamaecostus cuspidatus

 

leaves

 

Prevents diabetes, regulates blood sugar level, promotes healthy liver, antioxidant, immunity booster, anti-cancer, regulates blood pressure

 

 

35

Pure Paragis Tea

 

Eleusine indica

 

leaves

 

PCOS, myoma, cyst, UTI, irregular menstruation, sperm count, diabetes, high blood, kidney, arthritis, parasites

 

36

Sapang Red Tea

 

Caesalpinia sappan L.

 

wood

 

Tuberculosis, binat, anemia, liver cancer, hypertension/high blood, hepatitis, diarrhea, diabetes, tumor, irregular menstruation, breast cancer, stomach cancer, ovarian cancer and etc.

 

37

Damong Maria Tea

 

Artemisia vulgaris Linn

 

leaves

 

Good for irregular menstruation, adenomyosis, women with endometriosis, PCOS help dissolves cyst, clear UTI and bad vaginal smell or discharge

 

38

Pure Serpentina Tea

 

Rauvolfia serpentina (L.)

leaves

 

Cancer fighter, diabetes, antibacterial,m antiviral, analgesic, anti-inflammatory, high blood pressure, expectorant, immunity enhancer

 

39

Pure Ginger Salabat Tea

 

 

Zingiber officinale

roots

 

Aids in digestion, fights respiratory problems, relieves stress, reduces acne, increases sperm count 

 

40

TWININGS OF LONDON (Passionfruit, Mango and Orange) TEA

 

Passiflora edulis           

Mangifera indica         

Citrus sinensis

 

fruit

 

Not specified
41

TWININGS OF LONDON FOUR RED FRUITS TEA (Strawberry, Raspberry, Cherry and Redcurrants)

 

Fragaria ananassa          

Rubus idaeus                   

 Prunus avium                

Ribes rubrum

 

fruit

 

Not specified
42

CRAFTEA NUTTY (Dried Stevia)

 

Stevia rebaudiana

 

leaves

 

Aids in managing diabetes and weight control, relieves upset stomach, indigestion and heartburn, helps reduce formation of bacteria in the mouth preventing cavities and gingivitis, boost bone health and reduce the risk of osteoporosis

 

43

 

CRAFTEA NUTTY Blueberry Balm (Butterfly pea, Rosehip, Blueberry and Lemon)

 

Clitoria ternatea             

 Rosa                                 Vaccinium meridionale             Citrus limon

 

flower, fruit

 

Enhances mood, boosts collagen production, lowers blood pressure, and flushes out water weight

 

44

CRAFTEA NUTTY Mighty Green Warrior (Green Tea, Wolfberry and Orange)

 

Camellia sinensis           

Lycium barbarum        

 Citrus sinensis

 

Leaves, fruit

 

Colds and flu slayer, improves digestion, weight loss and fats flush-out, heart disease prevention

 

45

CRAFTEA NUTTY Heavenly Green Tea (Green Tea, Bamboo, Mint)

 

Camellia sinensis          Bambusoideae                

Mentha

 

leaves

 

Mental clarity, detoxifies blood, promotes heart and gut health, fights inflammation and infections

 

46

CRAFTEA NUTTY A Spiced Life (Assam, Cinnamon, Cardamom, Ginger)

 

 

Camellia sinensis          Cinnamomum verum       

Elettaria cardamomum    

Zingiber officinale

leaves

 

Boosts alertness, sustained energy non-crashing feeling, improves digestion and metabolism, boosts immunity

 

47

CRAFTEA NUTTY Brainy and Savvy (Jasmine green tea, Ginkgo Biloba, Rosemary)

 

Jasminum sambac Linn             

Camellia sinensis  

Ginkgo biloba            

 Salvia rosmarinus                

leaves

 

Improves memory and focus, stimulates creative thinking, elevates mood and pacifies anxiety, headache and migraine relief

 

48

TWININGS OF LONDON Defence (citrus, ginger with green tea, echinacea)

 

Citrus                      

Zingiber officinale        

Camellia sinensis         

Echinacea

 

leaves, root and fruit

 

Supports the normal function of the immune system

 

49

TWININGS OF LONDON Sleep Blue (Blood Orange flavored herbal infusion with orange blossom, chamomile, passionflower, lavender, and valerian)

 

Citrus sinensis                 Matricaria chamomilla   Passiflora incarnata       Lavandula                

Valeriana officinalis

 

root

 

Contributes to normal sleep

 

50

FLOWER TEA (Peach Flower)

 

Prunus persica

 

 

flower

 

Promotes weight loss, serves as a mild laxative that removes excess fats and toxins, reduces skin pigmentation, and boosts skin hydration

 

51

FLOWER TEA (Peony Flower)

 

Paeonia

 

flower

 

Improves blood flow, treats pain, muscle cramps, and inflammation, treats PCOS, and promotes healthy and balanced estrogen

 

52

FLOWER TEA (Carnation Flower)

 

Dianthus caryophyllus

 

flower

 

Treats pimples and acne, promotes clearer skin, promotes healthy digestion, anti-aging

 

53

LIPTON (Peppermint and Spearmint Tea)

 

Camellia sinensis       

Mentha piperita        

 Mentha spicata

 

leaves

Can help support a healthy heart

 

54

AHMAD TEA (Lemon, Mate, Matcha green tea)

 

Citrus limon                      

Ilex paraguariensis     

Camellia sinensis

 

Leaves, fruit

Weight loss

 

55

AHMAD TEA (Mango and Lychee)

 

Mangifera indica          

Litchi chinensis    

 

fruitNot specified
56

Oregano Powder Tea

 

Origanum vulgare  

 

leaves

For sore throat, cough, nausea, digestive problems and irritable bowel syndrome

 

57

NATURE'S APOTHECARY Tulsi Traditional Herbal Tea

 

Ocimum tenuiflorum

 

 

leaves

Nourishes the skin, rich in vitamin C, promotes restful sleep, reduces high blood pressure, promotes relaxation, decongests sinuses, relieves headaches 

 

58

NATURE'S APOTHECARY Namaste Signature Tea Blend (dried honeysuckle, white grass root, gardenia, tangerine peel, licorice, white tea, monk fruit)

 

Lonicera periclymenum   

Leersia virginica   

Gardenia jasminoides     

Citrus reticulata      

Glycyrrhiza glabra      

Camellia sinensis       

Siraitia grosvenorii

 

Leaves, roots, peel, fruit

Supports the respiratory system, supports liver health, supports the digestive system, helps reduce inflammation, helps lower cholesterol levels, rich in antioxidants 

 

59

AHMAD TEA BEAUTY (nettle leaves, lemon verbena leaves, lemon balm, lemongrass, chicory root, linden flowers, carob, rose, aloe vera, peach)

 

 

Urtica dioica               

Aloysia citrodora          

Citrus limon          

Cymbopogon citratus     Cichorium intybus            

Tilia                        

Ceratonia siliqua           

Rosa rubiginosa           

Aloe barbadensis miller   

Prunus persica        

 

Leaves, fruit, root, flowers

Proper sleep

 

60

NATURE'S APOTHECARY Sampa-sampalukan Traditional Herbal Tea

 

Phyllanthus niruri Linn. 

 

leaves

Protects liver from toxins, dissolution of kidney stones, cholesterol-lowering effects, lowers blood sugar levels, prevents gout attacks

 

61NATURE'S APOTHECARY Forget-me-Nots Traditional Herbal Tea

Euphorbia hirta

 

leaves

Natural bronchodilator, anti-inflammatory, anthelmintic, treat digestive problems, analgesic

 

62

NATURE'S APOTHECARY Salabat Plus Traditional Herbal Tea (Ginger, Turmeric, Mangosteen, Moringa, Guyabano, Oregano, Avocado, Lemongrass, Ampalaya and Peppermint)

 

Zingiber officinale       

Curcuma longa         

Garcinia mangostana     

Moringa oleifera        

Annona muricata         

Origanum vulgare       

Persea americana          Cymbopogon citratus     Momordica charantia      

Mentha piperita

 

Leaves, fruitsNot specified
63

NATURE'S APOTHECARY Forget-me-Nots Traditional Herbal Tea

 

Myosotis scorpioides

 

flower

Nourishes the skin, rich in Vitamin C, promotes restful sleep, reduces high blood pressure, promotes relaxation

 

64

PURE TEA 14 Day Skinny Tea (senna leaf, lotus leaf, chamomile, dark pu'erh leaf, sencha green tea, lemongrass, Garcinia Cambogia extract, rhubarb root, fennel, marshmallow leaf, holy thistle leaf, and malva leaf)

 

Senna                        

Nelumbo nucifera         

Matricaria chamomilla     Camellia sinensis          Cymbopogon citratus     

Garcinia cambogia             Foeniculum vulgare   

Althaea officinalis     

 Cnicus benedictus      

 Malva                              

Leaves, root

To support weight loss with traditional organic herbs that aid in detoxification and eliminate toxins released from fat cells when you lose weight. Helps burn fat and increase metabolism resulting in healthy weight loss. 

 

Species within the Lamiaceae, Rosaceae, and Asteraceae plant families have been scientifically validated for their positive impact on human health (Table 2). Notably, the Lamiaceae family, commonly known as the mint family, boosts a considerable number of medicinal species. Ethnobotanical to pharmacological studies reveal that some of these species have a longstanding history in folk medicine, with approximately 80% of the family's species being utilized for medicinal purposes. Plants within the Lamiaceae family are recognized for their abundance of polyphenolic components and terpenoids, contributing to their effectiveness in addressing digestive system issues, particularly flatulence and dyspepsia. Additionally, they are employed as constituents and treatments for infections [7]. The Rosaceae family, exemplified as a group of flowering plants, represents a promising reservoir of natural antioxidants. The utilization of total phenolics and flavonoids derived from these plants has been explored for the treatment of various diseases and ailments [8]. Similarly, the Asteraceae family, one of the largest groups of flowering plants, has been part of our diet and used for healing for a long time. The beneficial effects of these plants come from their natural compounds, like alkaloids, which are commonly used in medicine. Studies show that this plant family is rich in chlorogenic acids, which act as antioxidants and help prevent diseases [9].

 

C. sinensisC. limon, and J. sambac Linn are highly favored medicinal plants commonly used as ingredients in teas due to their several health benefits. In particular, Twinings of London herbal teas, featuring C. sinensis, claim to support heart health, lower the risk of certain cancers, and help prevent mental decline. This valuable plant which is known as the “tea plant” was studied in numerous laboratory research indicating that the bioactive compounds present in this plant have various physiological benefits against cardiovascular diseases, cancer progression, inflammatory response, and lower the risk of mental decline. It was reported that the anti-cancer effects of C. sinensis were due to its polyphenols (except ()-epicatechin) that exhibit the property of cell growth inhibition, and flavonoids that may be involved in the induction of apoptosis [10-11]. Reports suggested that consuming this tea decreased the 50% risk of gastric cancer in the Chinese population, and similarly, black tea exhibited strong protective actions against gastric cancer in the Indian population [12-13]. Another study confirmed that the consumption of green tea decreased the risk of colorectal cancer which was done by catechins that inhibit the activity of cancer-inducing nitrosamine compounds and heterocyclic amines [14]. The application of catechin nanohybrids in WM266 human melanoma significantly increased the rate of apoptosis of tumor cells [15]. Furthermore, several studies have been conducted on the tea polyphenols, flavan-3-ol, which were associated with antioxidant functions [16].  Also, studies suggest that green tea is the richest source of epigallocatechin-3-gallate (EGCG) which has reactive oxygen species (ROS) scavenging properties, and theaflavins which are more effective than epigallocatechin-3-gallate (EGCG) which has a strong free radical activity. These bioactive compounds present in teas might be the basis for the herbal teas' therapeutic claims that they can lower the risk of heart disease. Moreover, tea consists of a particular amino acid, L-theanine which has a significant role in the central nervous system that alters the synthesis of dopamine and serotonin in the brain, which helps in improving cognitive functions and reduces stress, mood, anxiety, and depression [17-18].

 

Table 2. Plants Used in Herbal Teas

Family/Scientific NameBiological ActivitiesBioactive CompoundsReference/s
Actinidiaceae   
Actinidia deliciosaAntimicrobial activity

syringic, chrysin and quercetin,

catechin, quercetin, and epigallocatechin

 

[19-20]
 Antioxidant activity
Anacardiaceae   
Mangifera indica LinnAnticancer activity, Antioxidant activity

quercetin 3-o-galactoside, polyphenols, carotenoids and anthocyanins

 

 

[21-22]
 Gastroprotective Effect mangiferin [23]
Anonaceae   
Annona muricataAntidepressiveanonaine, asimilobine, nor nuciferine[24-25]
 Antioxidantvitamin c, vitamin e, superoxide dismutase and catalase[26]
 Antimicrobial activityflavonoids, tannins, alkaloids, saponins
and cardiac glycosides 
[27]
 Anticarcinogenic acetogenins (ace)[28]
 Antimalarial activityisoboldine[29]
Apiaceae    
Centella asiaticaAnticancer activity, Anti-inflammatory activity/ Wound Healing, Antidepressant activity, Antioxidant property, Neuroprotective activityasiatic acid [30-34]
Foeniculum vulgareAnti-bacterial activitytrans-anethole, fenchone, and limonene[35]
 Anti-fungal activity
 Anti-anxiety activityquercetin-3β-d-glucoside, rutinhyperosidequercetinmiquelianin, trifolin, isorhamnetin and kaempferol [36]
Pimpinella anisumMuscle Relaxantpyridoxine, niacin, riboflavin, and thiamin[37]
 Anticonvulsant and antimicrobialphenylpropanoids, monoterpenes (hydrocarbons and phenolics), and trans-anethole, cis-anethole, estragolelinalool, α-terpineol, and methyl eugenol[38]
 Wound healing and Anti-Inflammatorygalactose, β-d-glucose, α-d-mannose, β-d-galactose, d-fructose, α-d-glucose, α-l-galactose and arabinose [39]
 Antioxidant Activitypalmitic, petroselinic, trans-anethole, naringin, gallic, rosmarinic, allergic and syringic acids[40]
 Antidiabetic,hypolipidemic, apigenin and luteolin[41]
Apocynaceae   
Rauvolfia serpentina (L.)Antibacterial, antioxidant, and antineoplasticajmalicine, ajmaline, yohimbine, and reserpine, kaempferol, vincamine[42-44]
Arecaceae   
Phoenix dactylifera Antioxidant activitygallic acid, chlorogenic acid, vanillic acid, caffeic acid, syringic acid, tyrosol, ferulic acid, o-coumaric acid, vanillin, catechin and rutin[45]
 Antiviral activityprotein and some derived polyphenolic compounds such as polysaccharides, lignans and bioflavonoids[46]
 Antifungal activityflavonoids, tannins, alkaloids and coumarins[47]
 Nephroprotective activitymelatonin, vitamin e, and ascorbic acid[48]
Asteraceae   
Artemisia vulgaris LinnAntifertility activitysteroids, flavonoids and saponins[49]
 Antioxidant activityNot mentioned[50]
Blumea balsamiferaAntitumor

dihydroflavonol bb-1

 

[51]
 Antimicrobial flavonoids and sesquiterpenoids[52]
 Anti-tyrosinase and anti-cancerluteolin-7-methyl ether[53]
 Antifungalichthyothereol acetate and cryptomeridiol[54]
 Antioxidant activityquercetinrhamnetinluteolin, luteolin-7-methyl ether , l-ascorbic acid, blumeatin, butylated hydroxyanisole, 5,7,3,5′-tetrahydroxyflavone, tamarixetin, butylated hydroxytoluene, α-tocopherol, dihydroquercetin-4′-methyl ether , dihydroquercetin-7,4-diethyl ether[55]
Calendula officinalisAnti-bacterial and antifungalt-muurolol and palustron[56]
Cichorium intybusAnti-inflammatory effectcarrageenan [57]
 Wound healing effectβ-sitosterol[58]
 Gastroprotective alkaloids, phenols, flavonoids, saponins, carbohydrates and glycosides[59]
 Anticancer effectflavonoids [60]
 Hepatocyte Protective and anti- hepatitis-Bcichoric acid [61]
Cnicus benedictusAntioxidant activity, anti-inflammatoryvanillic, silibinin b, ferulic acid and rutin[62]
 Antibacterial activityalkaloids, flavonoids, phenols, tannins and terpenes.[63]
EchinaceaAntioxidant caftaric acid, chlorogenic acid, caffeic acid, cynarinechinacoside and cichoric acid[64]
Matricaria recutita Antimicrobial activityα-bisabolol oxide, followed by camphene, sabinene, limonene,1,8-cineole, camphor, and α-pinene[65]
 Antifungal activitieschamazulene, isopropyl hexadecanoate, trans-trans-farnesol and e-β-farnesol[66]
 Antioxidant activity, antitumor, chemopreventivephenols and flavonoids[67]
 Anti-inflammatoryapigenin [68]
 Antigenotoxic actionsessential oils[69]
Stevia rebaudianaAntioxidantphenols and flavonoids[70]
Bignoniaceae   
Tabebuia avellanedae Anti-inflammatoryarachidonic acid[71]
Boraginaceae   
Myosotis arvensisantibacterialfatty acids, alkaloids, saponins, anthocyanins and flavonoids[72]
Bromeliaceae   
Ananas comosusHepatoprotective activitytannins, triterpene, steroids and flavonoids[73]
 anti-inflammatorycampesterol and ethyl iso allocholate [74]
 Antimalariallinoleic acid and palmitic acid[75]
Cactaceae   
Hylocereus undatusAntioxidant activityrhamnose, galactose, galacturonic acid, xylose, lignin, salicylic acid and protocatechuic acid[76]
Selenicereus undatusAntidiabeticalkaloid and flavonoid[77]
Caprifoliaceae   
LoniceraAntioxidant activityhexadecanoic acid, trans-farnesol, benzyl benzoate, 2-heptadecanone, linalool, benzaldehyde, anthracene, -terpineol, -muurolene and octadecane[78]
Valeriana officinalisAntioxidant activityphenolic (gallic acid)[79]
 Antiepileptic, anticonvulsant effectisovalerate[80]
 Sleep problemvalepotriates[81]
 Anxiolytic effects and analgesicvalerenic acid and valerenol[82]
Caricaceae   
Carica papayaAntioxidant activitytannins, pseudo tannin, flavonoids, glycosides, alkaloids[83]
 Antihypertensive activityquercetin, rutin, nicotiflorin, clitorin, and manghaslin[84]
 Wound healing activitychymopapain and papain[85]
 Hepatoprotective activityflavonoids[86]
 Digestive Healthvitamin c, carotenoids, flavonols, hydroxycinnamic acids[87]
Caryophyllaceae   
Dianthus caryophyllusAnticancer effect and antioxidant6-hydroxy kaempferol-3,6-o-diglucoside, 6-hydroxy kaempferol-7-o-glucoside, quercetin-3-o-sophoroside, and 2′-deoxyguanosine[88]
 Antibacterial and antifungalterpenoids and flavonoids[89]
Costaceae    
Chamaecostus cuspidatusAntioxidant activityquercetin, kaempferol, phytol, 

[90-91]

 

 Anticancer activitylupenone
 Antimicrobial activityquercetin, kaempferol, and cis-9,10-epoxy octadecan-1-ol
 Antifungal activity(z)-14-tricosenyl format
Clusiaceae   
Garcinia cambogiaAnti-obesity(−)-hydroxycitric acid[92]
 Hypolipidemic activityflavonoids and phenols[31]
 Antidiabetic activity
 Anti-inflammatory activity4,8-epi-uralione f, 4,8-epi-uralione g, uralione s, coccinone j, 6-epi-coccinone c, coccinone i, 36-hydroxy-guttiferone j, multiflora i, garcinia tibolone f and 36-hydroxy-garcinia gifolone f [93]
 Antioxidant activity, antibacterial pyrogallol, catechin, catechol, epicatechin, chlorogenic, salicylic acid, flavonoids and isoflavonoids[94]
 Anti-ulcer activityd (-)-erythro-hydroxycitric acid (hca)[95]
Garcinia mangostanaAntioxidant activity 8-hydroxycudraxanthone g, gartanin, α- mangostin, γ-mangostin and smith xanthone a[96]
Cucurbitaceae   
Cucumis melo Antioxidant activityphenolic and flavonoid compounds 3-hydroxybenzoic acid, chlorogenic acid, neochlorogenic acid, isovanillic acid, apigenin-7-α-glucoside, luteolin-7-o-glucoside, and quercetin-3-galactoside[97]
 Anticancer; cardiovascular diseases Phenols and flavonoids[98-]
Momordica charantiaHypoglycemic activitypolypeptide-p, charantin, momordenol, and momordicin[100-101]
 Antibacterial activityflavonoids, alkaloids and tannins[102]
 Antiviralflavonoids[103]
 Anti-HIVmap30, [104-106]
 
 Anticancer activityphenols[107]
 Abortifacient and antifertilitytriterpenoid glycosides, flavonoids and alkaloids
 Anti-ulcer activitysaponins, sterols, mucilage, glycoside, alkaloids, steroidal saponins[108]
 Anthelmintic activityquercetin [109]
 Antioxidant activitygallic acid, caffeic acid and catechin[110]
Siraitia grosvenoriiAntioxidant effectsα-l-arabinose, α-d-mannose, α-d-glucose, α-d-galactose, glucuronic acid, and galacturonic acid [111]
 Anticancer effectsmogrosides[112]
Ericaceae   
Vaccinium macrocarponanti-thrombotic, anti-inflammatorypolyphenols, phenolic acids (benzoic, hydroxycinnamic, and ellagic acids) and flavonoids (anthocyanins, flavonols, and flavan-3-ols)[113]
Vaccinium meridionale Antioxidant activityanthocyanins, hydroxycinnamic acids, flavonols, and procyanidins [114]
Euphorbiaceae   
Antidesma buniusAntioxidant and anti-obesogenicphenolics and anthocyanins, gallic acid, catechin, anthocyanin-3-glucoside, and protocatechuic acid [115]
Euphorbia hirtaAntimicrobial effectalkaloid, flavonoid, saponin, terpenoid, steroid and sterols[116]
 Antioxidant effectreducing sugars, terpenoids, alkaloids, steroids, tannins, flavonoids and phenolic compounds[117]
 Anti-inflammatory, analgesic and antipyretic effectsβ-amyrin, 24-methylene cycloartenol, and b-sitosterol[118]
Fabaceae   
Aspalathus linearisAntioxidant activity 

dihydrochalcones aspalathin and nothofagin

 

[119]
Caesalpinia sappan L.Anti Acne agentbrazilin[120]
 Antimicrobial activitysteroids, tannin, phenol, saponins and flavonoids[121]
Ceratonia siliquaAntioxidant activitygallic acid and gentisic acid[122]
 Anti-hyperglycaemic
 Antihyperlipidemic propertiestannins [123]
 Gastrointestinal benefitsphenolic acids and flavonoids[124]
Clitoria ternateaAntimicrobial activitiestannin, phlobatannin, flavonoid, cardiac glycosides, volatile oils, steroids and terpenoids.[125]
 Anti-inflammatoryphenols and flavonoids[126]
 Anticancer effectalkaloids, saponins and flavonoids[127]
 Antioxidant activityphenols and flavonoids[128]
SennaAntimicrobial activityorganic acid, flavan-3-ol, one flavone, glycosylated flavonols, proanthocyanidin dimers, and proanthocyanidin trimmers[129]
 Antimalarial activitypiperidine [130]
 Antioxidant and hepatoprotectivephenols and flavonoids[131]
Ginkgoaceae   
Ginkgo bilobaAntioxidant, and neuroprotective effectquercetin, myricetin[132-133]
Grossulariaceae   
Ribes nigrumAntispasmodic effectquercetin[134]
Ribes rubrumAntioxidant, anti-inflammatory, and antiplateletpolyphenolic and flavonoid[135]
Lamiaceae   
Lavandula angustifoliaAntifungal activityLinalool and linalyl acetate[136]
 Antioxidants, anti-microbial, anti-cancer, anti-inflammatory and anti-diabetic effect (-)-epicatechin, caffeic acid, gallic acid, hydroxytyrosol, kaempferol, and resveratrol, rosmarinic acid, caffeic acid, carnosol, p-coumaric acid, carnosic acid, luteolin, apigenin, and kaempferol, curcumin, colchicine, resveratrol, capsaicin, (-)-epigallocatechin, quercetin, myristicin, and elmicin, isoeugenol, coumarin, piperonal, scoparone, spathulenol, d-limonene, and myrcene[137]
Mentha piperita L.Antibacterial activityterpenoids, steroids, phenols, flavonoids, alkaloids, and tannins[138]
 Antioxidant activity
Mentha spicataAnti-Inflammatoryphenols and flavonoids[139]
 Antidiabetic Activity
 Antioxidant Activity
Monarda didyma L.Antifungal activitythymol, γ-terpinene, p-cymene, δ-3-carene, and myrcene [140]
 Antioxidant activity
Ocimum tenuiflorumAntimicrobial activitycamphor, eucalyptol, and eugenol [141]
 Antihyperglycemic activityphenols and flavonoids[142]
Origanum vulgareAntibacterial and anticancercarvacrol, terpinen, thymol, sabinine, linalool, terpinolene, quercetin, apigenin[143]
 Antioxidant activitythymol, gamma-terpinene, carvacrol, carvacrol methyl ether, cis-alphabisabolene, eucalyptol, p-cymene, and elemol[144]
Premna odorataAnti-inflammatory and Antioxidantiridoids (monoterpenes), triterpenes, flavones, and phenylethanoids[145]
 AntituberculosisPhenols and flavonoids[146]
Salvia rosmarinusAntioxidant, Anti-inflammatory, and Anticancer rosmarinic acid, luteolin-7-glucoside, rutin, ursolic acid, carnosol, and carnosic acid[147]
Thymus vulgarisAntioxidant and antimicrobialphenols[148]
Lauraceae   
Cinnamomum verumAntioxidantbutylated hydroxyanisole, trolox, and ascorbic acid[149]
Persea americanaAntioxidant activityhydrocarbon, sterols, and unsaturated fatty acids[150]
 Anti-inflammatory activity
 Anticancer activity
 Wound healing activitylutein, carotenoids, vitamins a and e, phospholipids, glycolipids, (z,z)-1-(acetyloxy)-2-hydroxy-12,15- heneicosane-4-one, andpersenone a and b[151]
Lythraceae   
Lagerstroemia speciosaAntidiabetic propertytriterpenes, tannins, ellagic acids, glycosides and flavonoids[152]
 
Malvaceae   
Althaea officinalisAntimicrobial activityomega-3, palmitic acid, heptacosane, nonacosane, palmitic acid, linoleic acid (omega-6), and naphthalene decahydro 2, 6- dimethyl[153]
HibiscusBreast cancerphenols and flavonoids[154]
Hibiscus sabdariffa   Antioxidant and antibacterialanthocyanins, flavonoids and polyphenols[155]
 Anti Aging assaysphenols and flavonoids[156]
MalvaAntimicrobial activitiespolysaccharides, coumarins, flavonoids, polyphenols, vitamins, terpenes, and tannins[157]
 Antioxidant efficacy, Wound healing activity, Anti-inflammatory, Anti Osteoclastogenic[158]
Tilia americanaAnticonvulsant activity tiliroside[159]
Moringaceae   
Moringa oleiferaAntioxidant properties, Hypolipidemic effectspolyphenols [160]
 Anti-inflammatory quercetin, kaempferol glycosides, glucoside malonates, acetyl glycosides, and succinoyl glycosides[161]
 Anticancer propertiesgallic acid, quercetin and kaempferol[162]
Myrtaceae   
Psidium guajavaAntioxidantphenolic compounds[163]
Nelumbonaceae   
Nelumbo nuciferaAntioxidant, Cytoprotective, and Anti-angiogenic effectrutin, catechin, sinapic acid, chlorogenic acid, syringic acid and quercetin[164]
 anti-obesity, Antidiabeticpolyphenolics, flavonoids, and tannic acid[165]
Oleaceae    
Jasminum sppAntimicrobial activity and antioxidant alkaloids, flavonoids (rutoside), terpenes, phenols, and iridoid glucosides[166]
 Anti-inflammatory activityalkaloids, flavonoids, saponins, tannins, and sterols[167]
 Chemopreventivealkaloids, tannins, carbohydrates, sterols and terpenoids, flavonoids, cardiac glycosides, proteins and amino acids.[168]
Paeonaceae   
PaeoniaAntioxidant activityKaempferol, luteolin, apigenin, isosalipurposide, quercetin[169]
 Cytoprotectivepaeoniflorin[170]
Pandanaceae   
Pandanus amaryllifoliusHepatoprotective effectstannins, alkaloids, saponinsterpenoids and flavonoid[171]
 Anti-obesity, hypertension, hyperglycemia and dyslipidemiaphenols and flavonoids[172-173]
 Antioxidant and anticancerrutin, epicatechin, naringin, catechin, kaempferol, gallic acid, cinnamic acid, and ferulic acid[174]
 Antiviral activitypandanin [175]
 Antimicrobialalkaloids, flavonoids, phenols, tannins, steroids, terpenoids, and carbohydrates compounds[176]
Passifloraceae   
Passiflora edulisAnti-inflammatory, hypoglycemic and hypertriglyceridemiapectin [177]
Phyllantaceae   
Phyllanthus niruri Antioxidant, anti hepatoprotectivephenolic compounds, phyllanthin and hypophyllanthin[178-179]
 Gastroprotective effect 
Poaceae   
Bambusa vulgaris Antimicrobial activityalkaloids, tannins, flavonoids, phenols, terpenoids[180]
Cymbopogon citratusAntibacterial activityα-citral (geranial) and β-citral (neral)[181-182]
 Anti-inflammatory, antifungalessential oils[183]
 Anti-obesity and antihypertensivelimonene, granite, citral, graminon, myrcene, and linalool [184]
 Antioxidant activityflavonoids [185]
 Anti-HIV activitynot mentioned[186]
Eleusine indicaAntidiabeticflavonoids [187]
Oryza sativa Antioxidant and anti-inflammatoryglutamic acid (glu), leucine (leu), aspartic acid (asp), arginine (arg) and alanine (ala). however, drb also contained cysteine (cys), glycine (gly), histidine (his), methionine (met), phenylalanine (phe), tryptophan (trp) and tyrosine (tyr)[188]
Polygonaceae   
Rheum rhabarbarumAntioxidant activityflavan-3-ols, flavonols, anthocyanins and gallotannin[189]
 Anti-inflammatory rhapontigenin and rhaponticin, typical stilbenes[190]
 Anticoagulant effect
Punicaceae   
Punica granatumAntibacterialpolyphenols, tannins, flavonoids and anthocyanins (cyanidins, delphinidins)[191]
Rosaceae   
Crataegus monogynaAntioxidant and antimicrobialpolyphenols and flavonoids[35]
Fragaria ananassa Antiproliferative, anti-type 2 diabetes, and antihypertensiveellagitannins and ellagic acid [192]
Malus domesticaAntioxidant activityquercetin and rutin[193]
 Hepatoprotective and inhibit hepatic steatosisflavonoid [194]
 Gastroprotectivephenolic compounds[195]
 Gastroprotectivephenolic acids (protocatechuic acid glucoside, (neo)chlorogenic acid, 4- hydroxybenzoic acid glucoside, chlorogenic acid, and vanillic acid glucoside), coumarins (aesculetin and its glucoside derivative), dihydrochalcones glucosides (phloretin glucoside, phloretin pentosyl-glucoside, and phlorizin) and flavonoids (kaempferol, quercetin and their mono and dimer glycosides)[196]
Prunus armeniacaAnticancer potentialamygdalin[197]
Prunus avium  Antioxidant capacityhydroxycinnamic acids, anthocyanins, flavan-3-ols, flavonol[198]
Prunus persica  Antimicrobial activityphenolics [199]
 Antitumor activityglycosides[200]
 Antioxidant activityphenolic and flavonoid[201]
 ascorbic acid, citric acid and α- tocopherol[202]
 Anti-allergic polyphenolics and flavonoids[203]
 Anticancer activitypolyphenolics[204]
    
Pyrus communisAntioxidant, anti-inflammatory, and antiproliferative activityphenolic acids, chlorophyllide a, 9-cis-β-carotene, ursolic acid, polyphenols and carotenoids[205]
Rosa rubiginosaAntioxidant activityascorbic acid and phenolic compounds[206]
Rubus idaeusLower weight, ambulatory activityphenolics [207]
Rubiaceae   
Gardenia jasminoidesHepatoprotective activitygeniposide, crocins and crocetin[208]
 Anti-inflammatory activitycrocetin[209]
 Antidepressant activitygenipin and crocin[210]
 Gastroprotectivegenipin and ursolic acid[211]
 Antithrombotic activitygeniposide and genipin[212]
Rutaceae   
Citrus japonicaAntioxidant, cytoprotective actionlimonene, germacrene d, dodecanol-1 and linolenic acid[213]
Citrus limonAntioxidant activityphenolics and flavonoids[214]
 lipoc acid, α- tocopherol, and ascorbic acid[215]
 hesperidin and eriocitrin[216]
 limonene, y-terpinene, and β- pinene[217]
Citrus sinensisAntimicrobialphenolics [218]
 Antifungal limonene, β-myrcene, β- pinene, α- pinene, citral z and e[219]
 Antiproliferative arabinose, galactose, xylose, rhamnose, mannose, and glucose[220]
 Antioxidant activitycarotenoids, phenolics, α- tocopherol, and physterols[221]
 Hypocholesterolemicpectin oligosaccharides[222]
 Anti-obesity activityflavanone aglycones[223]
Sapindaceae   
Dimocarpus longanHypoglycemic activitygallic acid and ellagic acid[224]
Litchi chinensisAntioxidant(−)-epicatechin, quercetin 3-o-rutinoside-7-o-α-l rhamnosidase and quercetin 3-o-rutinoside (rutin)[225]
Solanaceae   
Lycium ruthenicumAntioxidant activityanthocyanins[226]
 Antidiabetic potentialanthocyanins[227]
 Anti-fatigue activitiespolyphenols[228]
Theaceae   
Camellia sinensisAnti-aging activityepigallocatechin gallate, epigallocatechin, and epicatechin gallate[229]
 Anti-Alzheimer activity, antistroke, fatty acids, vitamin e, squalene, phytosterolflavonoids, and polyphenols[230]
 Anti-parkinson activityquercetin[231]
 Cardiovascular diseasestheanine and quercetin[232]
 Anticaries activity(––)-epigallocatechin gallate and (––)-epicatechin gallate[233]
 Antimutagenicphenolic and flavonoid[234
 Anti-obesity activityepigallocatechin gallate [235]
 Antioxidant, anti-inflammatorytheaflavin[236]
 Anticancer, antidiabetic, antimicrobial, and skin inflammationcatechins[237]
Urticaceae   
Urtica Dioica Antiasthmatic activityphenol (gallic acid)[238]
 Antibacterial, antioxidant, immunomodulatorycaffeoylmalic acid, caffeoylmalic acid dimer, and ascorbic acid[239]
 Prevention of atherosclerosisalkaloids and saponins[240]
 Antiulcer activity, Analgesic activity, antioxidant, anti-apoptotic, anti-inflammatory, antifungal, and antimicrobialmelatonin and β- carotene[241]
 Hyperglycaemic, Hypoglycaemicflavonoids, phenolics, gallic acid, and rutin[242]
 Antihypertensive effectatropin[243]
 Anti-HIVlectin[244]
 [245]
Vitaceae   
Vitis vinifera  Antioxidant capacitymelatonin[246]
 Neuroprotectivephenolics acid (gallic acid) and flavonoids (flavonoids)[247]
Vitis coignetiaeAnticanceranthocyanins[248]
Vitaceae   
Vitex negundoAnti-inflammatory and antioxidant3,4,9-trimethyl-7-propyl octanoic acid [249]
Zingiberaceae   
Elettaria cardamomumAntioxidant activityphenolics, and flavonoids[250]
Zingiber officinaleAntioxidantflavonoids, polyphenols, and tannin[251]
 Peptic ulcer alkaloid, steroids, terpenoids, flavonoids, and resins[252]
 Anti-inflammatory
 Antiemetic, anxiolytic, anticonvulsantgingerol[253]

C. limon, commonly known as Lemon, is a key ingredient in various teas, including The Good Harvest Dried Fruit and Tea Infusion, Craftea Nutty Blueberry Balm, and Twinings of London teas. These teas claim medicinal benefits, asserting they have antioxidant properties to prevent heart diseases like heart attacks or strokes, are rich in Vitamin C, and can enhance collagen production. Lemon is recognized for its bioactive compounds, including flavonoids, phenolic acids, and vitamins. The antioxidant effect, attributed to flavonoids like hesperidin and hesperetin, can combat free radicals [254]. Moreover, Vitamin C in Lemon protects DNA from mutations and inhibits free radical production. Research indicates that dermocosmetics containing Vitamin C from C. limon contribute to increased collagen production when applied externally, promoting smoother and tighter skin. When combined with Vitamin E, it acts synergistically as an antioxidant, reducing fine wrinkles and slowing down the aging process [255]. The scientific studies conducted on this medicinal plant, Lemon, likely play a crucial role in determining the effectiveness of the teas mentioned above.

 

The plant species J. sambac Linn is a prominent ingredient in Craftea Nutty Brainy and Savvy herbal tea, with claims to alleviate headache and migraine symptoms. A research study has verified that the ethanolic extract of J. sambac Linn leaves possesses antinociceptive activity. This pain-relieving effect is attributed to the presence of bioactive compounds in the plant, including alkaloids, tannins, flavonoids, and glycosides [256]. Consequently, the inclusion of this plant enhances the effectiveness of the mentioned tea in addressing pain-related issues.

 

A mixture of various medicinal plant species is evident in herbal teas, such as the Rita Ritz Pito-Pito Dried Herbal Tea. This mixture includes Lagerstroemia speciosa, Psidium guajavaMangifera indicaPandanus amaryllifolius, Centella asiaticaPimpinella anisum, and Premna odorata. The tea is claimed to offer a range of health benefits, including lowering blood sugar, promoting healthy gums, alleviating symptoms of loose bowels, exhibiting antibacterial properties, acting as a pain reliever, aiding in wound healing, muscle relaxation, providing gastric protection, supporting the digestive system, and even contributing to the treatment of tuberculosis. The medicinal plant C. asiatica is noted for its antidiabetic activity attributed to asiaticoside, which facilitates increased insulin levels and enhances the secretion of healthy pancreatic β-cells. Additionally, it demonstrates significant wound healing activity in both normal and delayed healing models, with asiaticoside being the primary active constituent [257]. P. anisum, containing a high level of trans-anethole, exhibits wound contraction and proven wound-healing activity [258]. This plant also provides gastric protection through its anti-ulcer activity, linked to chemical constituents like α-Zingiberene, Ar-curcumene, β-Bisabolene, β-Pinene, etc. [259]. Furthermore, L. speciosa showcases antibacterial activity primarily due to the presence of bioactive compounds such as proteins, amino acids, glycosides, alkaloids, terpenoids, saponins, phytosterols, flavonoids, etc. [260]. The chemical compounds identified in these medicinal plants substantiate the claims associated with the tea's health benefits.

 

Leaves, commonly used in teas, are recognized for their richness in active compounds such as alkaloids, tannins, coumarins, flavonoids, essential oils, and inulins. These compounds, crucial in many herbal remedies, are produced and stored through photosynthesis in leaves [261]. Compared to other plant parts, leaves have the highest concentration of secondary metabolites, contributing to antibacterial, antioxidant, antibiotic, and antidiabetic properties [262-263]. Moreover, leaves are the most abundant and easily collectible plant parts, facilitating plant conservation. Utilizing diverse leaf extracts ensures better preparation of active components for medications [264].

 

The current investigation highlights that the predominant biological activity identified in medicinal plants is antioxidant activity. A study showed that plants naturally have antioxidants, both enzymatic (e.g., proteins) and non-enzymatic (e.g., flavonoids and polyphenols) antioxidants. These antioxidants act as a defense system, helping plants deal with different types of stress and keeping them healthy [265]. As an example, medicinal plants like C. limon, Prunus persica, and P. anisum were extensively studied and demonstrated a robust correlation with antioxidant activity. A previous study reveals that phytochemical screening from the fruit of C. limon exhibits antioxidant activity due to its bioactive compounds, such as catechin, rutin, tannic, gallic, and vanillic acids that were detected in the peel, whereas in pulp quercetin, tannic and gallic acids were found [266]. Also, different solvent extraction of this medicinal plant shows great source of phenolic compounds, flavonoids and Vitamin C. Bioactive compounds such as carotenoids, phenolic compounds, ascorbic acid, fibers, and pectins give a strong correlation to its antioxidant properties [267]. This plant is a key ingredient in various popular tea brands like Twinings of London, The Good Harvest, Craftea Nutty, and Ahmad Tea. These teas claim to enhance the immune system, stimulate collagen production, and reduce blood pressure. The antioxidants, particularly Vitamin C, present in the plant, are believed to contribute to lowering oxidative stress, thereby lowering blood pressure and providing protection against damage caused by free radicals [268]. Clinical studies on Vitamin C have affirmed its positive effects on the skin, emphasizing its role in collagen formation [269-270]. Therefore, the medicinal claims associated with these teas find support in multiple research studies.

 

P. persica is a rich source of bioactive compounds particularly phenols such as gallic acid (3,4,5-trihydroxybenzoic acid), protocathechuic acid, protocatechualdehyde, chlorogenic acid, p-Coumaric acid, and ferulic acid which contributes to its antioxidant activity [271]. This medicinal plant, known for its diverse health benefits, is a key ingredient in various teas, including Ahmad Tea Beauty, Flower Tea, and Herbal Slimming Tea. The teas claim to support internal cleansing, boost thermogenic activity (heat production), aid in weight loss, act as a gentle laxative for eliminating excess fats and toxins, address skin issues, and promote better sleep. Some of these claims are supported by scientific research. For instance, a study confirms that gallic acid extracted from P. persica has free radical scavenging activity, contributing to various biological activities like reducing cholesterol levels and providing a protective effect on the skin [272]. It's important to note that some claims may be attributed to the combined medicinal properties of multiple plants in the tea mixture.

 

Previous study reveals that P. anisum has main phenolic compounds that are responsible for its antioxidant potential such as naringin, chlorogenic acid, quercetin, gallic acid, and rosmarinic acid [273]. It was reported that naringin was the main phenolic compound of ethyl acetate aniseed extract that is known as a strong antioxidant and scavenger of free radicals [274-275]. This medicinal plant is an ingredient in RITA RITZ Pito-Pito Dried Herbal tea, combined with other medicinal plants. The tea is renowned for its diverse benefits, claiming to lower blood sugar, promote healthy gums, relieve pain, aid wound healing, relax muscles, provide gastric protection, support the digestive system, and even contribute to tuberculosis treatment. Scientific studies confirm the antioxidant potential of naringin, a bioactive compound, suggesting a significant hypoglycemic (blood sugar-lowering) effect [276-277]. This scientific basis supports the tea's claim of lowering blood sugar. A previous study highlights naringin's therapeutic benefits in addressing conditions such as gastric ulcer and lung cancer by modulating protein expressions.

 

Aside from antioxidant properties, some medicinal plant species exhibit anti-inflammatory and antimicrobial properties. An earlier investigation focused on the extraction of Malva species (Malva sylvestris L.), revealing that malvidin 3‐glucoside is the primary bioactive compound responsible for its anti-inflammatory effect. Subsequent research identified rutin, a common flavonoid in this plant, as another potential phytochemical ingredient for treating chronic inflammation or serving as a promising functional food [278]. Recent studies have uncovered that the same Malva species includes 8-hydroxy-flavonoid sulphates and flavonoid glycosides, displaying bioactivity suitable for treating inflammatory diseases [279]. Moreover, another species within the Malva genus, Malva parviflora, has been identified to possess two compounds, oleanolic acid and scopoletin, which are responsible for its anti-inflammatory effect [280]. While these results may not directly validate the medicinal claim of the tea (PURETEA 14 Day Skinny Tea) regarding weight loss, various studies have explored the connection between anti-inflammatory effects and weight loss. It is mentioned that weight loss plays a crucial role in reducing inflammation, leading to a decrease in inflammation markers in the white adipose tissue of obese subjects [281]. In addition, P. amaryllifolius also exhibits antimicrobial properties. The extraction from the leaves of this medicinal plant contains bioactive compounds, including pandamarilactonine-A, B, C, piperidine (1 and 2), pyrrolidine (3 and 4), norpandamarilactonine-A, -B, pandamarilactone-1, pandamarine, and pandanamine, which belong to the alkaloid category. These alkaloids exhibit antibacterial properties [282], [283]. Additionally, the leaves of this plant release various secondary metabolites such as quercetin, carotenoids, tocopherols, tocotrienols, and essential oils, showcasing antitubercular activities against M. tuberculosis [284]. Pandanin, found in this plant, also demonstrates antiviral activities against human viruses, including herpes simplex virus type-1 (HSV-1) and influenza virus (H1N1) [285]. The significant phenolic content is suggested to be a major contributor to its antimicrobial activities against oral bacteria [286]. Several claims of RITA RITZ Pito-Pito Dried Herbal tea, such as its ability to lower blood sugar, promote healthy gums, provide pain relief, aid in wound healing, muscle relaxation, gastric protection, support the digestive system, and cure tuberculosis, were validated through the pharmacological activity of the medicinal plants within the tea. This pharmacological activity plays a crucial role in the effectiveness of the tea.

 

The 98 medicinal plants revealed that phenolic compounds, flavonoids, and alkaloids are the predominant bioactive constituents found in these plants. Flavonoids possess several medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties [287] and flavonoids rutin, quercetin, narigenin, hesperitin, kaempferol, anthoxanthins, and isoflavonoids are examples. In addition, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, and antioxidant effects [288]. Common phenolic compounds are gallic acid, caffeic acid, ferulic acid, ellagic acid, and rosmarinic acid. They are found abundantly in plant food and beverages, which play vital parts in pabulum and healthcare. Alkaloids have been widely studied owing to their beneficial biological properties, [289] antimalarial, antibacterial, antifungal, anti-inflammatory, and analgesic activity. Different alkaloids include piperidine, purine, and isoquinoline.

 

These bioactive compounds that were discovered in the 98 medicinal plants vary in their chemical structures and biological activities, however, they are both beneficial to human health and have numerous potential medical applications. For instance, flavonoids and phenolic compounds are used as antioxidants, anti-inflammatory drugs, anticancer drugs, and even have potential for managing type 2 diabetes [290-291]. Alkaloids are known to have muscle relaxant properties, antibacterial, antifungal, antitubercular, antidiabetic and anticancer [292].

CONCLUSION:

The efficacy and safety of herbal teas are crucial, especially for consumers who rely on their medicinal benefits that could treat their illnesses. Although some therapeutic claims of these commercialized herbal teas were validated by some laboratory-based investigations, there are still several plant species contained in herbal teas that are less investigated and provide less information about their purported activities. Additionally, limited studies were conducted about the toxicity of each plant to human health. Herbal teas have been made from a wide variety of plants, either separately or in combination, but research into how those plants interact biochemically is still lacking. 

 

Given the diverse composition of various plants present in herbal teas, thorough laboratory investigations are essential to explore the biochemical reactions linked to the bioactive compounds in each plant, particularly those sharing similar medicinal properties/functions. This research is essential for assessing the efficacy of herbal teas and holds the potential for establishing a pharmacological foundation for future medical development. This study also recommends additional research on the biochemical analysis of each medicinal plant's natural compounds, particularly to determine any potential toxicity or adverse reactions that can help more in revealing the underlying structure and relationships between medicinal plants and medicinal properties.

 

Acknowledgements

The author would like to thank to Department of Science and Technology- Accelerated Science and Technology Human Resource Development Program (DOST- ASTHRDP) for financial support by granting a scholarship and the Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology for their support and the Center of Integrative Health, Premier Research Institute of Science and Mathematics (PRISM) for the use of the facilities.

 

Funding: No funding sources.

 

Conflict of interest: None declared.

 

Ethical approval: The study was approved by the Institutional Ethics Committee of Mindanao State University-Iligan Institute of Technology.

REFERENCES:
  1. Al-Snafi, Ali Esmail. "Medicinal plants with antimicrobial activities (part 2): Plant based review." Sch Acad J Pharm 5.6 (2016): 208-239. doi: https://doi.org/10.21276/sajp.2016.5.6.2.
  2. OyetakinWhite, Patricia, Heather Tribout, and Elma Baron. "Protective mechanisms of green tea polyphenols in skin." Oxidative Medicine and Cellular Longevity 2012 (2012). doi: https://doi.org/10.1155/2012/560682.
  3. Dulloo, Abdul G., et al. "Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans." The American journal of clinical nutrition 70.6 (1999): 1040-1045. doi: https://doi.org/10.1093/ajcn/70.6.1040.
  4. Kesavarapu, Keerthana, et al. "Yogi Detox Tea: A potential cause of acute liver failure." Case Reports in Gastrointestinal Medicine 2017 (2017), doi: https://doi.org/10.1155/2017/3540756.
  5. Li, Chengxian, et al. "Systematic review of herbal tea (a traditional Chinese treatment method) in the therapy of chronic simple pharyngitis and preliminary exploration about its medication rules." Evidence-Based Complementary and Alternative Medicine 2019 (2019), doi: https://doi.org/10.1155/2019/9458676.
  6. Silk, D. B. A., J. A. Gibson, and C. R. H. Murray. "Reversible finger clubbing in a case of purgative abuse." Gastroenterology 68.4 (1975): 790-794. doi: https://doi.org/10.1016/s0016-5085(75)80292-7.
  7. Rashiq, Saifudin, Neil E. Brown, and Richard N. Fedorak. "Finger clubbing caused by herbal tea." Canadian Respiratory Journal 3 (1996): 269-271, doi: https://doi.org/10.1155/1996/404385.
  8. Naghibi, Farzaneh, et al. "Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology." Iranian journal of pharmaceutical research 4.2 (2005): 63-79. doi: https://doi.org/10.22037/ijpr.2010.619.
  9. Montazeri, Naser, et al. "Phytochemical contents and biological activities of Rosa canina fruit from Iran." Journal of Medicinal Plants Research 5.18 (2011): 4584-4589. doi: https://doi.org/10.5897/jmpr.9001001.
  10. Rolnik, Agata, and Beata Olas. "The plants of the Asteraceae family as agents in the protection of human health." International journal of molecular sciences 22.6 (2021): 3009. doi: https://doi.org/10.3390/ijms22063009.
  11. Chung, Jee Y., et al. "Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved." Cancer Research 59.18 (1999): 4610-4617. https://aacrjournals.org/cancerres/article-abstract/59/18/4610/505439
  12. de Mejia, Elvira Gonzalez, Marco Vinicio Ramirez-Mares, and Sirima Puangpraphant. "Bioactive components of tea: cancer, inflammation and behavior." Brain, behavior, and immunity 23.6 (2009): 721-731, doi: https://doi.org/10.1016/j.bbi.2009.02.013.
  13. Setiawan, Veronica Wendy, et al. "Protective effect of green tea on the risks of chronic gastritis and stomach cancer." International Journal of Cancer 92.4 (2001): 600-604. doi: https://doi.org/10.1002/ijc.1231.
  14. Zhang, Liang, et al. "Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review." Comprehensive Reviews in Food Science and Food Safety 18.5 (2019): 1474-1495, doi: https://doi.org/10.1111/1541-4337.12479.
  15. Di Leo, Nicoletta, et al. "A catechin nanoformulation inhibits WM266 melanoma cell proliferation, migration and associated neo-angiogenesis." European Journal of Pharmaceutics and Biopharmaceutics 114 (2017): 1-10, doi: https://doi.org/10.1016/j.ejpb.2016.12.024.
  16. Farkas, Orsolya, Judit Jakus, and Károly Héberger. "Quantitative structure–antioxidant activity relationships of flavonoid compounds." Molecules 9.12 (2004): 1079-1088. doi: https://doi.org/10.3390/91201079.
  17. Bernatoniene, Jurga, and Dalia Marija Kopustinskiene. "The role of catechins in cellular responses to oxidative stress." Molecules 23.4 (2018): 965. doi: https://doi.org/10.3390/molecules23040965.
  18. Williams, Jackson L., et al. "The effects of green tea amino acid L-theanine consumption on the ability to manage stress and anxiety levels: A systematic review." Plant foods for human nutrition 75 (2020): 12-23, doi: https://doi.org/10.1007/s11130-019-00771-5.
  19. Ma, Jin-Tao, et al. "Advances in research on chemical constituents and their biological activities of the genus Actinidia." Natural Products and Bioprospecting (2021): 1-37, doi: https://doi.org/10.1007/s13659-021-00319-8.
  20. Alim, Aamina, et al. "Antioxidant, antimicrobial, and antiproliferative activity-based comparative study of peel and flesh polyphenols from Actinidia chinensis." Food & Nutrition Research 63 (2019), doi: https://doi.org/10.29219/fnr.v63.1577.
  21. Meneses, Miguel A., et al. "Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction." Journal of Food Engineering 163 (2015): 45-53. doi: https://doi.org/10.1016/j.jfoodeng.2015.04.025.
  22. Ajila, C. M., L. Jaganmohan Rao, and UJS Prasada Rao. "Characterization of bioactive compounds from raw and ripe Mangifera indica L. peel extracts." Food and Chemical Toxicology 48.12 (2010): 3406-3411, doi: https://doi.org/10.1016/j.fct.2010.09.012.
  23. Carvalho, A. et al. "Gastroprotective Effect of Mangiferin, a Xanthonoid from Mangifera indica, against Gastric Injury Induced by Ethanol and Indomethacin in Rodents." Planta Medica, vol. 73, no. 13, (2007), pp. 1372–1376, doi: https://doi.org/10.1055/s-2007-990231.
  24. Hasrat, J. A., et al. "Isoquinoline derivatives isolated from the fruit of Annona muricata as 5-HTergic 5-HT1A receptor agonists in rats: unexploited antidepressive (lead) products." Journal of pharmacy and pharmacology 49.11 (1997): 1145-1149. doi: https://doi.org/10.1111/j.2042-7158.1997.tb06058.x.
  25. Hasrat, J. A., et al. "Screening of medicinal plants from Suriname for 5-HT1A ligands: Bioactive isoquinoline alkaloids from the fruit of Annona muricata." Phytomedicine 4.2 (1997): 133-140, doi: https://doi.org/10.1016/s0944-7113(97)80059-1.
  26. Vijayameena, C., et al. "Original Research Article Phytochemical screening and assessment of antibacterial activity for the bioactive compounds in Annona muricata." Int. J. Curr. Microbiol. Appl. Sci 2 (2013): 1-8. https://www.researchgate.net/profile/Ramesh-Balasubramanian-3/publication/234076924_Phytochemical_screening_and_assessment_of_antibacterial_activity_for_the_bioactive_compounds_in_Annona_muricata/links/09e4150ede8ee1e2a4000000/Phytochemical-screening-and-assessment-of-antibacterial-activity-for-the-bioactive-compounds-in-Annona-muricata.pdf
  27. Olugbuyiro, Joseph AO, et al. "Phytochemical constituents, antioxidant and antimicrobial activities of Eugenia uniflora linn. Leaf." (2018): 798-805. doi: https://doi.org/10.31788/rjc.2018.1121823.
  28. Alvarez-Gonzalez, Isela, et al. "Anticarcinogenic and genotoxic effects produced by acetogenins isolated from Annona muricata." Toxicology Letters 180 (2008): S228. doi: https://doi.org/10.1016/j.toxlet.2008.06.027.
  29. Fofana, Bakary, et al. "Differential incidence of malaria in neighboring villages in a high-transmission setting of southern Mali." The American Journal of Tropical Medicine and Hygiene 106.4 (2022): 1209, doi: https://doi.org/10.4269/ajtmh.21-0788.
  30. Khatua, Ashapurna, et al. "Evaluation of antimicrobial, anticancer potential and Flippase induced leakage in model membrane of Centella asiatica fabricated MgONPs." Biomaterials Advances 138 (2022): 212855. doi: https://doi.org/10.1016/j.bioadv.2022.212855.
  31. Shetty, B. Somashekar, et al. "Effect of Centella asiatica L (Umbelliferae) on normal and dexamethasone-suppressed wound healing in Wistar Albino rats." The International Journal of Lower Extremity Wounds 5.3 (2006): 137-143, doi: https://doi.org/10.1177/1534734606291313.
  32. Orhan, Ilkay Erdogan. "Centella asiatica (L.) Urban: From traditional medicine to modern medicine with neuroprotective potential." Evidence-based complementary and alternative medicine 2012 (2012). doi: https://doi.org/10.1155/2012/946259.
  33. Pittella, Frederico, et al. "Antioxidant and cytotoxic activities of Centella asiatica (L) Urb." International journal of molecular sciences 10.9 (2009): 3713-3721. doi: https://doi.org/10.3390/ijms10093713.
  34. Ceremuga, Tomás Eduardo, et al. "Evaluation of the anxiolytic and antidepressant effects of asiatic acid, a compound from Gotu kola or Centella asiatica, in the male Sprague Dawley rat." AANA journal 83.2 (2015). https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=00946354&AN=102321359&h=qhlQhrI2PjK0514caUnp1umesDBcnpix%2Fl31gLXpIkOWTWA4II4W%2BMl2Kxxr8KBUIxMumZs14nT%2BoLwMCW%2FupQ%3D%3D&crl=c
  35. Belabdelli, Fouzia, et al. "Chemical composition and antifungal activity of Foeniculum vulgare Mill." Chemistry Africa 3 (2020): 323-328, doi: https://doi.org/10.1007/s42250-020-00130-x.
  36. Zhao, Li, et al. "Profiling the chemical properties of Foeniculum vulgare Mill. and its flavonoids through comprehensive LC-MS/MS to evaluate their anti-motion sickness effect." Fitoterapia (2023): 105816. doi: https://doi.org/10.1016/j.fitote.2023.105816.
  37. Sun, Wenli, Mohamad Hesam Shahrajabian, and Qi Cheng. "Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes." Cogent Biology 5.1 (2019): 1673688. doi: https://doi.org/10.1080/23312025.2019.1673688.
  38. Abdel-Reheem, Mohammed AT, and Mona M. Oraby. "Anti-microbial, cytotoxicity, and necrotic ripostes of Pimpinella anisum essential oil." Annals of Agricultural Sciences 60.2 (2015): 335-340. doi: https://doi.org/10.1016/j.aoas.2015.10.001.
  39. Ghlissi, Zohra, et al. "Polysaccharide from Pimpinella anisum seeds: Structural characterization, anti-inflammatory and laser burn wound healing in mice." International journal of biological macromolecules 156 (2020): 1530-1538. doi: https://doi.org/10.1016/j.ijbiomac.2019.11.201.
  40. Rebey, Iness Bettaieb, et al. "Bioactive compounds and antioxidant activity of Pimpinella anisum L. accessions at different ripening stages." Scientia horticulturae 246 (2019): 453-461. doi: https://doi.org/10.1016/j.scienta.2018.11.016.
  41. Shobha, R. I., C. U. Rajeshwari, and B. Andallu. "Anti-peroxidative and anti-diabetic activities of aniseeds (Pimpinella anisum L.) and identification of bioactive compounds." American Journal of Phytomedicine and clinical therapeutics 1.5 (2013): 516-527. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8a00ea57256949655e21344092162d683dd7c35f
  42. Joshi, Abhayraj S., Priyanka Singh, and Ivan Mijakovic. "Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance." International Journal of Molecular Sciences 21.20 (2020): 7658, doi: https://doi.org/10.3390/ijms21207658.
  43. Gupta, Jaya, and Amit Gupta. "Isolation and extraction of flavonoid from the leaves of Rauwolfia serpentina and evaluation of DPPH-scavenging antioxidant potential." Orient. J. Chem 31 (2015): 231-235. doi: https://doi.org/10.13005/ojc/31.special-issue1.28.
  44. Al-Rashed, Sarah, et al. "Vincamine, a safe natural alkaloid, represents a novel anticancer agent." Bioorganic chemistry 107 (2021): 104626. doi: https://doi.org/10.1016/j.bioorg.2021.104626.
  45. Alahyane, A., et al. "Bioactive compounds and antioxidant activity of seventeen Moroccan date varieties and clones (Phoenix dactylifera L.)." South African Journal of Botany 121 (2019): 402-409. doi: https://doi.org/10.1016/j.sajb.2018.12.004.
  46. Jassim, Sabah AA, and Mazen A. Naji. "In vitro evaluation of the antiviral activity of an extract of date palm (Phoenix dactylifera L.) pits on a Pseudomonas phage." Evidence-Based Complementary and Alternative Medicine 7 (2010): 57-62, doi: https://doi.org/10.1093/ecam/nem160.
  47. Boulenouar, Noureddine, Abderrazak Marouf, and Abdelkrim Cheriti. "Antifungal activity and phytochemical screening of extracts from Phoenix dactylifera L. cultivars." Natural product research 25.20 (2011): 1999-2002, doi: https://doi.org/10.1080/14786419.2010.536765.
  48. Al-Qarawi, A. A., et al. "Nephroprotective action of Phoenix dactylifera. in gentamicin-induced nephrotoxicity." Pharmaceutical Biology 46.4 (2008): 227-230. doi: https://doi.org/10.1080/13880200701739322.
  49. Shaik, Afsar, et al. "Antifertility activity of Artemisia vulgaris leaves on female Wistar rats." Chinese journal of natural medicines 12.3 (2014): 180-185. doi: https://doi.org/10.1016/s1875-5364(14)60030-3.
  50. Sharmila, K., and P. R. Padma. "Effect of Artemisia vulgaris leaf extract on antioxidant status of primary chick embryo fibroblasts." International Journal of Pharma and Bio Sciences 5.1 (2014). https://www.cabdirect.org/globalhealth/abstract/20143165927
  51. Hasegawa, Hiroo, et al. "Dihydroflavonol BB-1, an extract of natural plant Blumea balsamifera, abrogates TRAIL resistance in leukemia cells." Blood 107.2 (2006): 679-688. doi: https://doi.org/10.1182/blood-2005-05-1982.
  52. Cushnie, TP Tim, and Andrew J. Lamb. "Antimicrobial activity of flavonoids." International journal of antimicrobial agents 26.5 (2005): 343-356, doi: https://doi.org/10.1016/j.ijantimicag.2005.12.002.
  53. Saewan, Nisakorn, S. Koysomboon, and K. Chantrapromma. "Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC." J Med Plants Res 5.6 (2011): 1018-1025. doi: https://doi.org/10.5897/JMPR.9000112.
  54. Ragasa, Consolacion Y., Angel Lyn Kristin C. Co, and John A. Rideout. "Antifungal metabolites from Blumea balsamifera." Natural Product Research 19.3 (2005): 231-237, doi: https://doi.org/10.1080/14786410410001709773.
  55. Nessa, Fazilatun, et al. "Free radical-scavenging activity of organic extracts and of pure flavonoids of Blumea balsamifera DC leaves." Food Chemistry 88.2 (2004): 243-252, doi: https://doi.org/10.1016/j.foodchem.2004.01.041.
  56. Tonks, Amanda Jayne, et al. "A 5.8-kDa component of manuka honey stimulates immune cells via TLR4." Journal of Leucocyte Biology 82.5 (2007): 1147-1155, doi: https://doi.org/10.1189/jlb.1106683.
  57. Rizvi, Waseem, et al. "Anti-inflammatory activity of roots of Cichorium intybus due to its inhibitory effect on various cytokines and antioxidant activity." Ancient science of life 34.1 (2014): 44. doi: https://doi.org/10.4103/0257-7941.150780.
  58. Sundar, S., et al. "Antibacterial and Antifungal activity of Carica papaya L seed extracts." Research Journal of Pharmacy and Technology 14.2 (2021): 1085-1090. doi: https://doi.org/10.5958/0974-360x.2021.00195.5.
  59. Saxena, R. A. H. U. L., KUNJ BIHARI Sulakhiya, and M. A. N. O. J. Rathore. "Cichorium intibus Linn.: a review of pharmacological profile." International Journal of Current Pharmaceutical Research 6.4 (2014): 11-15. https://www.researchgate.net/profile/Kunjbihari_Sulakhiya/publication/268481482_Cichorium_intibus_Linn_a_review_of_pharmacological_profile/links/546c62ab0cf20dedafd553fe/Cichorium-intibus-Linn-a-review-of-pharmacological-profile
  60. Saleem, Mohammad, et al. "Anticancer activity of n-hexane extract of Cichorium intybus on lymphoblastic leukemia cells (Jurkat cells)." Afr. J. Plant Sci 8 (2014): 315-319. doi: https://doi.org/10.5897/ajps2013.1021.
  61. Li, Guo-Yu, et al. "In silico analysis and experimental validation of active compounds from Cichorium intybus L. ameliorating liver injury." International Journal of Molecular Sciences 16.9 (2015): 22190-22204. doi: https://doi.org/10.3390/ijms160922190.
  62. Can, Zehra, et al. "Properties of antioxidant and anti-inflammatory activity and phenolic profiles of Şevketi Bostan (Cnicus benedictus L.) cultivated in Aegean Region from Turkey." Turkish Journal of Agriculture-Food Science and Technology 5.4 (2017): 308-314, doi: https://doi.org/10.24925/turjaf.v5i4.308-314.1054.
  63. Yasin, Youssef Shakuri, Shalal Murad Hussian, and Saleh M. Rahem. "Antibacterial activity of ethanolic extract of leaves of the blessed thistle (Cnicus benedictus L.)." Al Mustansiriyah Journal of Pharmaceutical Sciences 17.1 (2017): 9-9. doi: https://doi.org/10.32947/ajps.v17i1.53.
  64. Pellati, Federica, et al. "Analysis of phenolic compounds and radical scavenging activity of Echinacea spp." Journal of Pharmaceutical and Biomedical Analysis 35.2 (2004): 289-301, doi: https://doi.org/10.1016/s0731-7085(03)00645-9.
  65. Kazemi, Mohsen. "Chemical composition and antimicrobial activity of essential oil of Matricaria recutita." International Journal of Food Properties 18.8 (2015): 1784-1792. doi: https://doi.org/10.1080/10942912.2014.939660.
  66. Jamalian, A., et al. "Chemical composition and antifungal activity of Matricaria recutita flower essential oil against medically important dermatophytes and soil-borne pathogens." Journal de mycologie medicale 22.4 (2012): 308-315. doi: https://doi.org/10.1016/j.mycmed.2012.09.003.
  67. Al-Dabbagh, Bayan, et al. "Antioxidant and anticancer activities of chamomile (Matricaria recutita L.)." BMC research notes 12.1 (2019): 1-8, doi: https://doi.org/10.1186/s13104-018-3960-y.
  68. Asadi, Zahra, Tooba Ghazanfari, and Helia Hatami. "Anti-inflammatory effects of Matricaria chamomilla extracts on BALB/c mice macrophages and lymphocytes." Iranian Journal of Allergy, Asthma and Immunology (2020). doi: https://doi.org/10.18502/ijaai.v19i(s1.r1).2862.
  69. Hernández-Ceruelos, Alejandra, et al. "Antigenotoxic effect of Chamomilla recutita (L.) Rauschert essential oil in mouse spermatogonial cells, and determination of its antioxidant capacity in vitro." International Journal of Molecular Sciences 11.10 (2010): 3793-3802, doi: https://doi.org/10.3390/ijms11103793.
  70. Tadhani, M. B., V. H. Patel, and Rema Subhash. "In vitro antioxidant activities of Stevia rebaudiana leaves and callus." Journal of food composition and Analysis 20.3-4 (2007): 323-329. doi: https://doi.org/10.1016/j.jfca.2006.08.004.
  71. Byeon, Se Eun, et al. "In vitro and in vivo anti-inflammatory effects of taheebo, a water extract from the inner bark of Tabebuia avellanedae." Journal of ethnopharmacology 119.1 (2008): 145-152.doi: https://doi.org/10.1016/j.jep.2008.06.016.
  72. Znajdek-Awiżeń, Paulina, et al. "Comparative study on the essential oils of Myosotis arvensis and Myosotis palustris herbs (Boraginaceae)." Acta Physiologiae Plantarum 36 (2014): 2283-2286, doi: https://doi.org/10.1007/s11738-014-1562-4.
  73. Mallik, Debashis, Chiranjib Bhattacharjee, and T. Shivraj Gouda. "Pharmacological intervention of the fruit of plant Ananas comosus acting as hepatoprotective activity in animal models." Indian Journal of Research in Pharmacy and Biotechnology 2.3 (2014): 1167. https://www.researchgate.net/profile/Chiranjib-Bhattacharjee/publication/303498131_Pharmacological_intervention_of_the_fruit_of_plant_Ananas_comosus_acting_as_hepatoprotective_activity_in_animal_models/links/5a290a8ca6fdcc8e8671d4b6/Pharmacological-intervention-of-the-fruit-of-plant-Ananas-comosus-acting-as-hepatoprotective-activity-in-animal-models.pdf
  74. Kargutkar, Samira, and S. Brijesh. "Anti-inflammatory evaluation and characterization of leaf extract of Ananas comosus." Inflammopharmacology 26 (2018): 469-477, doi: https://doi.org/10.1007/s10787-017-0379-3.
  75. Uzor, Philip F., Blessing U. Ishiwu, and Ngozi J. Nwodo. "In vivo antimalarial effect of Ananas comosus (L) Merr (Bromeliaceae) fruit peel, and gas chromatography-mass spectroscopy profiling: a possible role for polyunsaturated fatty acid." Tropical Journal of Pharmaceutical Research 19.1 (2020): 137-145. doi: https://doi.org/10.4314/tjpr.v19i1.21.
  76. Zhuang, Yongliang, Yufeng Zhang, and Liping Sun. "Characteristics of fibre‐rich powder and antioxidant activity of pitaya (Hylocereus undatus) peels." International journal of food science & technology 47.6 (2012): 1279-1285. https://doi.org/10.1111/j.1365-2621.2012.02971.x
  77. SONU, P., et al. "Antidiabetic Activity Of Selenicereus Undatus (Haw). Fruit Extract Against Alloxan Induced Diabetic Mice." International Journal of Pharmaceutical Research (09752366) 14.1 (2022). doi: https://doi.org/10.31838/ijpr/2022.14.01.005.
  78. Tenore, Gian Carlo, et al. "Antimicrobial and antioxidant properties of the essential oil of Salvia lanigera from Cyprus." Food and Chemical Toxicology 49.1 (2011): 238-243, doi: https://doi.org/10.1016/j.fct.2010.10.022.
  79. Zheng, Wei, and Shiow Y. Wang. "Antioxidant activity and phenolic compounds in selected herbs." Journal of Agricultural and Food chemistry 49.11 (2001): 5165-5170, doi: https://doi.org/10.1021/jf010697n.
  80. Lacher, Svenja K., et al. "Interaction of valerian extracts of different polarity with adenosine receptors: identification of isovaltrate as an inverse agonist at A1 receptors." Biochemical pharmacology 73.2 (2007): 248-258. doi: https://doi.org/10.1016/j.bcp.2006.09.029.
  81. Patočka, Jiří, and Jiří Jakl. "Biomedically relevant chemical constituents of Valeriana officinalis." Journal of applied biomedicine 8.1 (2010): 11-18, doi: https://doi.org/10.2478/v10136-009-0002-z.
  82. Benke, Dietmar, et al. "GABAA receptors as in vivo substrate for the anxiolytic action of valerenic acid, a major constituent of valerian root extracts." Neuropharmacology 56.1 (2009): 174-181, doi: https://doi.org/10.1016/j.neuropharm.2008.06.013.
  83. Kanagavalli, M., and R. Anuradha. "A study on phytochemical constituents and in vitro antioxidant activity of Carica papaya." Research Journal of Pharmacy and Technology 5.1 (2012): 119-120. https://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=5&issue=1&article=025
  84. Brasil, Girlandia Alexandre, et al. "Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex." Planta medica 80.17 (2014): 1580-1587, doi: https://doi.org/10.1055/s-0034-1383122.
  85. Mahmood, A. A., K. Sidik, and I. Salmah. "Wound healing activity of Carica papaya L. aqueous leaf extract in rats." International Journal of Molecular Medicine and Advance Sciences 1.4 (2005): 398-401. https://www.researchgate.net/profile/Salmah_Ismail/publication/216569922_Wound_healing_activity_of_Carica_papaya_L_aqueous_leaf_extract_in_rats/links/00b7d51bc017679f75000000.pdf
  86. Oseni, O., et al. "Antioxidant and hepatoprotective activities of Carica papaya (Papaw Leaf) and Loranthus bengwensis (cocoa mistletoes) against diclofenac induced hepatotoxicity in rats." Int J Life Sci Scienti Res 4.1 (2018): 1974-1982. doi: https://doi.org/10.21276/ijlssr.2018.4.5.3.
  87. Süntar, Ipek, et al. "Comparative evaluation of traditional prescriptions from Cichorium intybus L. for wound healing: stepwise isolation of an active component by in vivo bioassay and its mode of activity." Journal of ethnopharmacology 143.1 (2012): 299-309. doi: https://doi.org/10.1016/j.jep.2012.06.036.
  88. Zhou, Xuhong, et al. "Widely targeted metabolomics reveals the antioxidant and anticancer activities of different colors of Dianthus caryophyllus." Frontiers in Nutrition 10 (2023): 1166375, doi: https://doi.org/10.3389/fnut.2023.1166375.
  89. Kamil, Shireen S., Hussein J. Hussein, and A. H. Al-Marzoqi. "Evolution of Antibacterial efficacy of Dianthus caryophyllus L. extracts against some hospitals pathogenic bacteria." International Journal of Pharmaceutical Research 12.3 (2020): 1274-1279. https://www.researchgate.net/profile/Hussein-J-Hussein/publication/341804152_Evolution_of_Antibacterial_efficacy_of_Dianthus_caryophyllus_L_extracts_against_some_hospitals_pathogenic_bacteria/links/5ed5619e299bf1c67d325b45/Evolution-of-Antibacterial-efficacy-of-Dianthus-caryophyllus-L-extracts-against-some-hospitals-pathogenic-bacteria.pdf
  90. Tominaga, Takatoshi, Marie-Laure Murat, and Denis Dubourdieu. "Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitis vinifera L. cv. Sauvignon blanc." Journal of Agricultural and Food Chemistry 46.3 (1998): 1044-1048, doi: https://doi.org/10.1021/jf970782o.
  91. Ponnanikajamideen, M., S. Rajeshkumar, and G. Annadurai. "In vivo antidiabetic and in vitro antioxidant and antimicrobial activity of aqueous leaves extract of Chamaecostus cuspidatus." Research Journal of Pharmacy and Technology 9.8 (2016): 1204-1210. http://dx.doi.org/10.5958/0974-360X.2016.00230.4
  92. Oluyemi, Kayode Alaba, et al. "Erythropoietic and anti‐obesity effects of Garcinia cambogia (bitter kola) in Wistar rats." Biotechnology and applied Biochemistry 46.1 (2007): 69-72, doi: https://doi.org/10.1042/ba20060105.
  93. Feng, Zheling, et al. "Polyisoprenylated benzophenone derivatives from Garcinia cambogia and their anti-inflammatory activities." Food & Function 12.14 (2021): 6432-6441, doi: https://doi.org/10.1039/d1fo00972a.
  94. AL-ASKALANY, SAMIA A. "Evaluation of Garcinia cambogia plant extracts antifungal, antibacterial and antioxidant." Egyptian Journal of Agricultural Research 96.1 (2018): 121-134, doi: https://doi.org/10.21608/ejar.2018.130675.
  95. Mahendran, P., A. J. Vanisree, and C. S. Shyamala Devi. "The antiulcer activity of Garcinia cambogia extract against indomethacin‐induced gastric ulcer in rats." Phytotherapy research 16.1 (2002): 80-83, doi: https://doi.org/10.1002/ptr.946.
  96. Jung, Hyun-Ah, et al. "Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen)." Journal of agricultural and food chemistry 54.6 (2006): 2077-2082. doi: https://doi.org/10.1021/jf052649z.
  97. Ganji, Shirin Mal, Harmit Singh, and Mendel Friedman. "Phenolic content and antioxidant activity of extracts of 12 melon (Cucumis melo) peel powders prepared from commercial melons." Journal of Food Science 84.7 (2019): 1943-1948, doi: https://doi.org/10.1111/1750-3841.14666.
  98. Wang, Yun, et al. "Anticancer and Antibacterial Activities of Silver Nanoparticles (AgNPs) Synthesized from Cucumis melo L." Journal of Nanoscience and Nanotechnology 20.7 (2020): 4143-4151, doi: https://doi.org/10.1166/jnn.2020.17524.
  99. Adebayo-Gege, G., et al. "Anti-atherogenic and cardio-protective properties of sweet melon (Cucumis melo. L. Inodorus) seed extract on high fat diet induced obesity in male wistar rats." BMC Complementary Medicine and Therapies 22.1 (2022): 334, doi: https://doi.org/10.1186/s12906-022-03793-w.
  100. Khanna, Pushpa, et al. "Hypoglycemic activity of polypeptide-p from a plant source." Journal of Natural Products 44.6 (1981): 648-655, doi: https://doi.org/10.1021/np50018a002
  101. Hazarika, Ridip, et al. "Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon)." Bioinformation 8.6 (2012): 251. doi:  https://doi.org/10.6026/97320630008251.
  102. Costa, José Galberto M., et al. "Antibacterial activity of Momordica charantia (Curcubitaceae) extracts and fractions." Journal of basic and clinical pharmacy 2.1 (2010): 45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979203/
  103. Angamuthu, Divyadarshini, et al. "Antiviral study on Punica granatum L., Momordica charantia L., Andrographis paniculata Nees, and Melia azedarach L., to human herpes virus-3." European Journal of Integrative Medicine 28 (2019): 98-108, doi: https://doi.org/10.1016/j.eujim.2019.04.008.
  104. Lee-Huang, Sylvia, et al. "Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon." Gene 161.2 (1995): 151-156, doi: https://doi.org/10.1016/0378-1119(95)00186-a.
  105. Lee-Huang, Sylvia, Philip Lin Huang, and Paul Lee Huang. "The Discovery of MAP30 and Elucidation of its Medicinal Activities." Antitumor Potential and other Emerging Medicinal Properties of Natural Compounds (2013): 117-126. https://link.springer.com/chapter/10.1007/978-94-007-6214-5_8
  106. Mekloy, Paktraporn, et al. "Investigation of genes coding for anti-HIV proteins MAP30 and MRK29 from Thai bitter melon (Momordica charantia L.)." Pharmaceutical Sciences Asia 49.1 (2022). https://www.researchgate.net/profile/Somnuk-Bunsupa/publication/357570175_Investigation_of_genes_coding_for_anti-HIV_proteins_MAP30_and_MRK29_from_Thai_bitter_melon_Momordica_charantia_L/links/61d7aa05e669ee0f5c8d047e/Investigation-of-genes-coding-for-anti-HIV-proteins-MAP30-and-MRK29-from-Thai-bitter-melon-Momordica-charantia-L.pdf
  107. Jerald, Sheeja Edvin, et al. "ANTIFERTILITY ACTIVITY OF MOMORDICA CHARANTIA DESCOURT PULP AND SEED HYDROALCOHOLIC EXTRACT." Journal of Applied Pharmacy 4.4 (2012), doi: https://doi.org/10.21065/19204159.4.249.
  108. Rao, N. Venkat, et al. "Evaluation of antiulcer activity of Momordica charantia in rats." Int J Pharm Biol Sci 1.1 (2011): 1-6. https://www.academia.edu/download/55269479/01.ijpbs_50b7283061025.pdf
  109. Pereira, Cíntia AJ, et al. "Anti-helminthic activity of Momordica charantia L. against Fasciola hepatica eggs after twelve days of incubation in vitro." Veterinary parasitology 228 (2016): 160-166, doi: https://doi.org/10.1016/j.vetpar.2016.08.025.
  110. Kubola, Jittawan, and Sirithon Siriamornpun. "Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro." Food chemistry 110.4 (2008): 881-890, doi: https://doi.org/10.1016/j.foodchem.2008.02.076.
  111. Zhu, Yong-Ming, et al. "Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii." International journal of biological macromolecules 165 (2020): 1900-1910, doi: https://doi.org/10.1016/j.ijbiomac.2020.10.127.
  112. Konno, S., J. Elyaguov, and A. Dixon. "Anticancer and Antioxidant Effects of Bioactive Extracts from Monk Fruit (Siraitia grosvenori) with Potential Clinical Implications." Cancer Sci Res 5.1 (2022): 1-10. https://www.scivisionpub.com/pdfs/anticancer-and-antioxidant-effects-of-bioactive-extracts-from-monk-fruit-siraitia-grosvenori-with-potential-clinical-implications-2097.pdf
  113. McKay, Diane L., and Jeffrey B. Blumberg. "Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors." Nutrition reviews 65.11 (2007): 490-502. doi: https://doi.org/10.1111/j.1753-4887.2007.tb00273.x.
  114. Garzón, G. A., et al. "Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia." Food Chemistry 122.4 (2010): 980-986. doi: https://doi.org/10.1016/j.foodchem.2010.03.017.
  115. Krongyut, Ornnicha, and Khaetthareeya Sutthanut. "Phenolic profile, antioxidant activity, and anti-obesogenic bioactivity of Mao Luang fruits (Antidesma bunius L.)." Molecules 24.22 (2019): 4109, doi: https://doi.org/10.3390/molecules24224109.
  116. Ahmad, Waseem, Shilpa Singh, and Sanjay Kumar. "Phytochemical screening and antimicrobial study of Euphorbia hirta extracts." J Med Plants Stud 5.2 (2017): 183-6. https://www.plantsjournal.com/archives/2017/vol5issue2/PartC/5-2-7-339.pdf .
  117. Basma, Abu Arra, et al. "Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L." Asian Pacific journal of tropical medicine 4.5 (2011): 386-390, doi: https://doi.org/10.1016/s1995-7645(11)60109-0.
  118. Vazquez, Mariano Martinez, et al. "Anti-inflammatory active compounds from the n-hexane extract of Euphorbia hirta." Journal of the Mexican Chemical Society 43.3-4 (1999): 103-105. https://www.redalyc.org/pdf/475/47543410.pdf .
  119. Manley, Marena, Elizabeth Joubert, and Mariza Botha. "Quantification of the major phenolic compounds, soluble solid content and total antioxidant activity of green rooibos (Aspalathus linearis) by means of near infrared spectroscopy." Journal of Near Infrared Spectroscopy 14.4 (2006): 213-222., doi: https://doi.org/10.1255/jnirs.638.
  120. Batubara, Irmanida, Tohru Mitsunaga, and Hideo Ohashi. "Brazilin from Caesalpinia sappan wood as an antiacne agent." Journal of wood science 56 (2010): 77-81, doi: https://doi.org/10.1007/s10086-009-1046-0.
  121. Srinivasan, Rajendran, et al. "In vitro antimicrobial activity of Caesalpinia sappan L." Asian Pacific Journal of Tropical Biomedicine 2.1 (2012): S136-S139. doi: https://doi.org/10.1016/s2221-1691(12)60144-0.
  122. Custódio, Luísa, et al. "In vitro antioxidant and inhibitory activity of water decoctions of carob tree (Ceratonia siliqua L.) on cholinesterases, α-amylase and α-glucosidase." Natural product research 29.22 (2015): 2155-2159. doi: https://doi.org/10.1080/14786419.2014.996147.
  123. Macho-González, A., et al. "Effects of fiber purified extract of carob fruit on fat digestion and postprandial lipemia in healthy rats." Journal of agricultural and food chemistry 66.26 (2018): 6734-6741, doi: https://doi.org/10.1021/acs.jafc.8b01476.
  124. Ydjedd, Siham, et al. "Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity." Journal of Agricultural and Food Chemistry 65.4 (2017): 827-835, doi: https://doi.org/10.1021/acs.jafc.6b05103.
  125. Kamilla, L., et al. "Antimicrobial activity of Clitoria ternatea (L.) extracts." Pharmacologyonline 1 (2009): 731-738. https://pharmacologyonline.silae.it/files/archives/2009/vol1/074.Kamilla.pdf
  126. Swathi, K. P., et al. "Evaluation of anti-inflammatory and anti-arthritic property of ethanolic extract of Clitoria ternatea." Chinese Herbal Medicines 13.2 (2021): 243-249. doi: https://doi.org/10.1016/j.chmed.2020.11.004.
  127. Jacob, Lijy, and M. S. Latha. "Anticancer activity of Clitoria ternatea Linn. against Dalton’s lymphoma." International Journal of Pharmacognosy and Phytochemical Research 4.4 (2012): 207-212. https://www.researchgate.net/profile/Mukalel-Latha/publication/281543515_Anticancer_Activity_of_Clitoria_ternatea_Linn_Against_Dalton's_Lymphoma/links/55ed234908ae21d099c746a5/Anticancer-Activity-of-Clitoria-ternatea-Linn-Against-Daltons-Lymphoma.pdf .
  128. Lakshan, S. A. T., et al. "Antioxidant and selected chemical properties of the flowers of three different varieties of Butterfly Pea (Clitoria ternatea L.)." Ceylon J. Sci 49 (2020): 195-201, doi: https://doi.org/10.4038/cjs.v49i2.7740.
  129. do Nascimento, Michelle Nauara Gomes, et al. "Antimicrobial and cytotoxic activities of Senna and Cassia species (Fabaceae) extracts." Industrial Crops and Products 148 (2020): 112081. doi: https://doi.org/10.1016/j.indcrop.2019.112081.
  130. Pivatto, Marcos, et al. "Antimalarial activity of piperidine alkaloids from Senna spectabilis and semisynthetic derivatives." Journal of the Brazilian Chemical Society 25 (2014): 1900-1906.doi: https://doi.org/10.5935/0103-5053.20140195.
  131. Bellassoued, Khaled, et al. "Antioxidant and hepatopreventive effects of Cassia angustifolia extract against carbon tetrachloride-induced hepatotoxicity in rats." Archives of physiology and biochemistry 127.6 (2021): 486-496. doi: https://doi.org/10.1080/13813455.2019.1650778.
  132. Ahlemeyer, B., and J. Krieglstein. "Neuroprotective effects of Ginkgo biloba extract." Cellular and Molecular Life Sciences CMLS 60 (2003): 1779-1792. doi: https://doi.org/10.1007/s00018-003-3080-1.
  133. Sestili, Piero, et al. "Quercetin prevents DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide: free radical scavenging versus iron chelating mechanism." Free Radical Biology and Medicine 25.2 (1998): 196-200.doi: https://doi.org/10.1016/s0891-5849(98)00040-9.
  134. Miladinovic, Bojana, et al. "Antispasmodic effect of blackcurrant (Ribes nigrum L.) juice and its potential use as functional food in gastrointestinal disorders." Medical Principles and Practice 27.2 (2018): 179-185, doi: https://doi.org/10.1159/000487202.
  135. Gülmez, Gizem, et al. "The antioxidant, anti‐inflammatory, and antiplatelet effects of Ribes rubrum L. fruit extract in the diabetic rats." Journal of Food Biochemistry 46.7 (2022): e14124. doi: https://doi.org/10.1111/jfbc.14124.
  136. D'auria, F. D., et al. "Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form." Medical mycology 43.5 (2005): 391-396., doi: https://doi.org/10.1080/13693780400004810.
  137. Shahrajabian, Mohamad H., and Wenli Sun. "Survey on medicinal plants and herbs in traditional Iranian medicine with anti-oxidant, anti-viral, anti-microbial, and anti-inflammation properties." Letters in Drug Design & Discovery 20.11 (2023): 1707-1743., doi: https://doi.org/10.2174/1570180819666220816115506.
  138. Singh, Rajinder, Muftah AM Shushni, and Asma Belkheir. "Antibacterial and antioxidant activities of Mentha piperita L." Arabian Journal of Chemistry 8.3 (2015): 322-328., doi: https://doi.org/10.1016/j.arabjc.2011.01.019.
  139. Kaddour, Abdelbasset, et al. "Total phenolic and flavonoid contents of Mentha spicata leaves aqueous extracts in different regions of Algeria and their antioxidant, and antidiabetic activities." Tropical Journal of Pharmaceutical Research 21.9 (2022): 1907-1913, doi: https://doi.org/10.4314/tjpr.v21i9.14.
  140. Fraternale, Daniele, et al. "Chemical composition, antifungal and in vitro antioxidant properties of Monarda didyma L. essential oil." Journal of essential oil research 18.5 (2006): 581-585., doi: https://doi.org/10.1080/10412905.2006.9699174.
  141. Yamani, Hanaa A., et al. "Antimicrobial activity of Tulsi (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria." Frontiers in microbiology 7 (2016): 681. doi: https://doi.org/10.3389/fmicb.2016.00681.
  142. Mousavi, Leila, et al. "Hypoglycemic and anti-hyperglycemic study of Ocimum tenuiflorum L. leaves extract in normal and streptozotocin-induced diabetic rats." Asian Pacific Journal of Tropical Biomedicine 6.12 (2016): 1029-1036. doi: https://doi.org/10.1016/j.apjtb.2016.10.002.
  143. Sankar, Renu, et al. "Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity." Colloids and Surfaces B: Biointerfaces 108 (2013): 80-84. doi: https://doi.org/10.1016/j.colsurfb.2013.02.033.
  144. Vazirian, M., et al. "Chemical composition and antioxidant activity of Origanum vulgare subsp. vulgare essential oil from Iran." Research Journal of Pharmacognosy 2.1 (2015): 41-46. https://www.rjpharmacognosy.ir/&url=http://www.rjpharmacognosy.ir/article_7578_192d0760fb3acccd98ad3cd5fb4cf3da.pdf
  145. Elmaidomy, Abeer H., et al. "Anti-inflammatory and antioxidant activities of terpene-and polyphenol-rich Premna odorata leaves on alcohol-inflamed female wistar albino rat liver." Molecules 25.14 (2020): 3116, doi: https://doi.org/10.3390/molecules25143116.
  146. Youssef, Fadia S., et al. "Morphology, anatomy and secondary metabolites investigations of Premna odorata Blanco and evaluation of its anti-tuberculosis activity using in vitro and in silico studies." Plants 10.9 (2021): 1953, doi: https://doi.org/10.3390/plants10091953.
  147. Brindisi, Matteo, et al. "Chemical profile, antioxidant, anti-inflammatory, and anti-cancer effects of Italian Salvia rosmarinus Spenn. methanol leaves extracts." Antioxidants 9.9 (2020): 826. doi: https://doi.org/10.3390/antiox9090826.
  148. Mancini, Emilia, et al. "Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils." Molecules 20.7 (2015): 12016-12028. doi: https://doi.org/10.3390/molecules200712016.
  149. Mathew, Sindhu, and T. Emilia Abraham. "In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies." Food and Chemical Toxicology 44.2 (2006): 198-206. doi: https://doi.org/10.1016/j.fct.2005.06.013.
  150. Alkhalaf, Maha I., et al. "Anti-oxidant, anti-inflammatory and anti-cancer activities of avocado (Persea americana) fruit and seed extract." Journal of King Saud University-Science 31.4 (2019): 1358-1362, doi: https://doi.org/10.1016/j.jksus.2018.10.010.
  151. Nayak, B. S., S. S. Raju, and A. V. Chalapathi Rao. "Wound healing activity of Persea americana (avocado) fruit: a preclinical study on rats." Journal of wound care 17.3 (2008): 123-125. doi: https://doi.org/10.12968/jowc.2008.17.3.28670.
  152. Chan, Eric Wei Chiang, Lea Ngar Tan, and Siu Kuin Wong. "Phytochemistry and pharmacology of Lagerstroemia speciosa: A natural remedy for diabetes." International Journal of Herbal Medicine 2.2 (2014): 100-105. https://www.academia.edu/download/38896458/Chan_et_al._IJHM_2014.pdf
  153. Valiei, Mahdi, Ali Shafaghat, and Farshid Salimi. "Chemical composition and antimicrobial activity of the flower and root hexane extracts of Althaea officinalis in Northwest Iran." Journal of medicinal plants research 5.32 (2011): 6972-6, doi: https://doi.org/10.5897/jmpr11.963.
  154. Nguyen, Christopher, et al. "Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics." BMC complementary and alternative medicine 19.1 (2019): 1-14., doi: https://doi.org/10.1186/s12906-019-2505-9.
  155. Lin, Tzu-Li, et al. "Hibiscus sabdariffa extract reduces serum cholesterol in men and women." Nutrition research 27.3 (2007): 140-145. doi: https://doi.org/10.1016/j.nutres.2007.01.007.
  156. Krishnamurthy, Zuliana Muhamad Ridzwan, et al. "Hibiscus sabdariffa extract as anti-aging supplement through its antioxidant and anti-obesity activities." Biomedical Research and Therapy 7.1 (2020): 3572-3578., doi: https://doi.org/10.15419/bmrat.v7i1.584.
  157. Shadid, Khalid A., et al. "Phenolic content and antioxidant and antimicrobial activities of Malva sylvestris L., Malva oxyloba Boiss., Malva parviflora L., and Malva aegyptia L. leaves extract." Journal of Chemistry 2021 (2021): 1-10. https://www.hindawi.com/journals/jchem/2021/8867400/
  158. Sharifi‐Rad, Javad, et al. "Malva species: Insights on its chemical composition towards pharmacological applications." Phytotherapy Research 34.3 (2020): 546-567. doi: https://doi.org/10.1002/ptr.6550.
  159. Chávez-Morales, Yadid, et al. "Effect of standardized fractions and tiliroside from leaves of Tilia americana on depression tests in mice." Iranian Journal of Pharmaceutical Research: IJPR 18.4 (2019): 1931. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059060/
  160. Chumark, Pilaipark, et al. "The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves." Journal of ethnopharmacology 116.3 (2008): 439-446. , doi: https://doi.org/10.1016/j.jep.2007.12.010.
  161. Coppin, Julia P., et al. "Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera." Journal of Functional Foods 5.4 (2013): 1892-1899. , doi: https://doi.org/10.1016/j.jff.2013.09.010.
  162. Sreelatha, S., A. Jeyachitra, and P. R. Padma. "Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells." Food and Chemical Toxicology 49.6 (2011): 1270-1275, doi: https://doi.org/10.1016/j.fct.2011.03.006.
  163. Jiménez-Escrig, Antonio, et al. "Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber." Journal of Agricultural and food Chemistry 49.11 (2001): 5489-5493, doi: https://doi.org/10.1021/jf010147p.
  164. Lee, Da-Bin, Do-Hyung Kim, and Jae-Young Je. "Antioxidant and cytoprotective effects of lotus (Nelumbo nucifera) leaves phenolic fraction." Preventive nutrition and food science 20.1 (2015): 22, doi: https://doi.org/10.3746/pnf.2015.20.1.22.
  165. Sim, Wan-Sup, et al. "Anti-obesity effect of extract from Nelumbo nucifera L., morus alba L., and raphanus sativus mixture in 3T3-L1 adipocytes and C57BL/6J obese mice." Foods 8.5 (2019): 170, doi: https://doi.org/10.3390/foods8050170.
  166. Balkrishna, Acharya, et al. "Mechanistic insight into antimicrobial and antioxidant potential of Jasminum species: A herbal approach for disease management." Plants 10.6 (2021): 1089., doi: https://doi.org/10.3390/plants10061089.
  167. Bhangale, Jitendra, et al. "Preliminary studies on anti-inflammatory and analgesic activities of Jasminum sambac (L.) Aiton in experimental animal models." Am J PharmTech Res 2.4 (2012): 1-10. https://www.researchgate.net/profile/Sanjeev-Acharya-3/publication/249964259_Preliminary_Studies_on_Anti-Inflammatory_and_Analgesic_Activities_of_Jasminum_Sambac_L_Aiton_in_Experimental_Animal_Models/links/0046351e772e9ab402000000/Preliminary-Studies-on-Anti-Inflammatory-and-Analgesic-Activities-of-Jasminum-Sambac-L-Aiton-in-Experimental-Animal-Models.pdf
  168. Kalaiselvi, M., et al. "Chemopreventive effect and HPTLC fingerprinting analysis of Jasminum sambac (L.) Ait. extract against DLA-induced lymphoma in experimental animals." Applied biochemistry and biotechnology 169 (2013): 1098-1108., doi: https://doi.org/10.1007/s12010-012-0045-6.
  169. Li, Chonghui, et al. "Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers." Journal of agricultural and food chemistry 57.18 (2009): 8496-8503, doi: https://doi.org/10.1021/jf902103b.
  170. Choi, Eun Mi, and Young Soon Lee. "Paeoniflorin isolated from Paeonia lactiflora attenuates osteoblast cytotoxicity induced by antimycin A." Food & function 4.9 (2013): 1332-1338. doi: https://doi.org/10.1039/c3fo60147a.
  171. Shameenii, A., et al. "Hepatoprotective effects of Pandanus amaryllifolius against carbon tetrachloride (CCl4) induced toxicity: A biochemical and histopathological study." Arabian Journal of Chemistry 14.10 (2021): 103390, doi: https://doi.org/10.1016/j.arabjc.2021.103390.
  172. Chiabchalard, Anchalee, and Nattakarn Nooron. "Antihyperglycemic effects of Pandanus amaryllifolius Roxb. leaf extract." Pharmacognosy magazine 11.41 (2015): 117, doi: https://doi.org/10.4103/0973-1296.149724.
  173. Reshidan, Nur Hidayah, Suhaila Abd Muid, and Norshalizah Mamikutty. "The effects of Pandanus amaryllifolius (Roxb.) leaf water extracts on fructose-induced metabolic syndrome rat model." BMC complementary and alternative medicine 19.1 (2019): 1-13, doi: https://doi.org/10.1186/s12906-019-2627-0.
  174. Ghasemzadeh, Ali, and Hawa ZE Jaafar. "Profiling of phenolic compounds and their antioxidant and anticancer activities in pandan (Pandanus amaryllifolius Roxb.) extracts from different locations of Malaysia." BMC complementary and alternative medicine 13 (2013): 1-9, doi: https://doi.org/10.1186/1472-6882-13-341.
  175. Ooi, Linda SM, Samuel SM Sun, and Vincent EC Ooi. "Purification and characterization of a new antiviral protein from the leaves of Pandanus amaryllifolius (Pandanaceae)." The international journal of biochemistry & cell biology 36.8 (2004): 1440-1446, doi: https://doi.org/10.1016/j.biocel.2004.01.015.
  176. Yusof, H., Hishamuddin, F. N. E., Richard, R. L. F., Abd Majid, M. A., and Hamid, Z. Z. A. "Preliminary Study of Antimicrobial Potential of Pandanus amaryllifolius Leaves Using Methanol Solvent Extract Against Pathogenic Bacteria." Bulletin FSK, vol. 2, no. 1, (2018), pp. 38–44.
  177. Silva, Draulio C., et al. "Pectin from Passiflora edulis shows anti-inflammatory action as well as hypoglycemic and hypotriglyceridemic properties in diabetic rats." Journal of medicinal food 14.10 (2011): 1118-1126, doi: https://doi.org/10.1089/jmf.2010.0220.
  178. Syamasundar, Kodakandla Venkata, et al. "Antihepatotoxic principles of Phyllanthus niruri herbs." Journal of ethnopharmacology 14.1 (1985): 41-44. https://doi.org/10.1016/0378-8741(85)90026-1
  179. Abdulla, Mahmood Ameen, et al. "Gastroprotective effect of Phyllanthus niruri leaf extract against ethanol-induced gastric mucosal injury in rats." African Journal of Pharmacy and Pharmacology 4.5 (2010): 226-230, doi: https://doi.org/10.5897/ajpp.9000160.
  180. Owolabi, Moses S., and Labunmi Lajide. "Preliminary phytochemical screening and antimicrobial activity of crude extracts of Bambusa vulgaris Schrad. Ex JC Wendl.(Poaceae) from southwestern Nigeria." American Journal of Essential Oils and Natural Products 3.1 (2015): 42-45. https://www.essencejournal.com/vol3/issue1/pdf/2-4-7.1.pdf
  181. Onawunmi, Grace O., Wolde-Ab Yisak, and E. O. Ogunlana. "Antibacterial constituents in the essential oil of Cymbopogon citratus (DC.) Stapf." Journal of Ethnopharmacology 12.3 (1984): 279-286, doi: https://doi.org/10.1016/0378-8741(84)90057-6.
  182. Bharti, S. K., et al. "Essential oil of Cymbopogon Citratus against diabetes: Validation by." (2013): 194-203.doi: https://doi.org/10.4172/1948-593x.1000098.
  183. Boukhatem, Mohamed Nadjib, et al. "Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs." Libyan Journal of Medicine 9.1 (2014). doi: https://doi.org/10.3402/ljm.v9.25431.
  184. Guerrini, Alessandra, et al. "A Comparative Study on Chemical Compositions and Biological Activities of Four Amazonian Ecuador Essential Oils: Curcuma longa L.(Zingiberaceae), Cymbopogon citratus (DC.) Stapf,(Poaceae), Ocimum campechianum Mill.(Lamiaceae), and Zingiber officinale Roscoe (Zingiberaceae)." Antibiotics 12.1 (2023): 177, doi: https://doi.org/10.3390/antibiotics12010177.
  185. Chou, Osbert, et al. "Lc-esi-qtof-ms/ms characterisation of phenolics in herbal tea infusion and their antioxidant potential." Fermentation 7.2 (2021): 73, doi: https://doi.org/10.3390/fermentation7020073.
  186. Wright, S. C., J. E. Maree, and M. Sibanyoni. "Treatment of oral thrush in HIV/AIDS patients with lemon juice and lemon grass (Cymbopogon citratus) and gentian violet." Phytomedicine 16.2-3 (2009): 118-124.doi: https://doi.org/10.1016/j.phymed.2008.07.015.
  187.  Ong, Siew Ling, Koteswara Rao Nalamolu, and How Yee Lai. "Potential lipid-lowering effects of Eleusine indica (L) Gaertn. Extract on high-fat-diet-induced hyperlipidemic rats." Pharmacognosy magazine 13.Suppl 1 (2017): S1.doi: https://doi.org/10.4103/0973-1296.203986.
  188. Bougatef, Ali, et al. "Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins." Food chemistry 118.3 (2010): 559-565. doi: https://doi.org/10.1016/j.foodchem.2009.05.021.
  189. Kalisz, Stanisław, et al. "Effect of a variety of polyphenols compounds and antioxidant properties of rhubarb (Rheum rhabarbarum)." Lwt 118 (2020): 108775, doi: https://doi.org/10.1016/j.lwt.2019.108775.
  190. Liudvytska, Oleksandra, et al. "Effects of Rheum rhaponticum and Rheum rhabarbarum extracts on haemostatic activity of blood plasma components and endothelial cells in vitro." Journal of Ethnopharmacology 315 (2023): 116562, doi: https://doi.org/10.1016/j.jep.2023.116562.
  191. Sukri, Siti Nur Amalina Mohamad, et al. "Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract." Journal of Molecular Structure 1189 (2019): 57-65. doi: https://doi.org/10.1016/j.molstruc.2019.04.026.
  192. da Silva Pinto, Marcia, et al. "Evaluation of antiproliferative, anti-type 2 diabetes, and antihypertension potentials of ellagitannins from strawberries (Fragaria× ananassa Duch.) using in vitro models." Journal of Medicinal Food 13.5 (2010): 1027-1035, doi: https://doi.org/10.1089/jmf.2009.0257.
  193. Pandey, Jitendra, et al. "Estimation of total quercetin and rutin content in Malus domestica of Nepalese origin by HPLC method and determination of their antioxidative activity." Journal of Food Quality 2020 (2020): 1-13, doi: https://doi.org/10.1155/2020/8853426.
  194. Yang, Jingyu, et al. "Hepatoprotective effects of apple polyphenols on CCl4-induced acute liver damage in mice." Journal of agricultural and food chemistry 58.10 (2010): 6525-6531. doi: https://doi.org/10.1021/jf903070a.
  195. Paturi, Gunaranjan, et al. "Apple polyphenol extracts protect against aspirin‐induced gastric mucosal damage in rats." Phytotherapy Research 28.12 (2014): 1846-1854, doi: https://doi.org/10.1002/ptr.5210.
  196. Mahmoud, Mona F., et al. "Apple (Malus domestica Borkh) leaves attenuate indomethacin-induced gastric ulcer in rats." Biomedicine & Pharmacotherapy 160 (2023): 114331, doi: https://doi.org/10.1016/j.biopha.2023.114331.
  197. Gupta, Anil, et al. "Studies on physico-chemical characteristics and fatty acid composition of wild apricot (Prunus armeniaca Linn.) kernel oil." (2012).
  198. H. Kelebek and S. Selli, “Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars,” International Journal of Food Science & Technology, vol. 46, no. 12, pp. 23–27, 2011. https://nopr.niscpr.res.in/handle/123456789/14818
  199. Koyu, Halil, et al. "Cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbon dioxide extracted Prunus persica leaves." Molecular Biology Reports 47.1 (2020): 569-581, doi: https://doi.org/10.1007/s11033-019-05163-1.
  200. Fukuda, Toshiyuki, et al. "Anti-tumor promoting effect of glycosides from Prunus persica seeds." Biological and Pharmaceutical Bulletin 26.2 (2003): 271-273, doi: https://doi.org/10.1248/bpb.26.271.
  201. Dhingra, Naveen, Rajesh Sharma, and Anand Kar. "Towards further understanding on the antioxidative activities of Prunus persica fruit: A comparative study with four different fractions." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 132 (2014): 582-587, doi: https://doi.org/10.1016/j.saa.2014.05.008.
  202. Carbonaro, Marina, et al. "Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.)." Journal of agricultural and food chemistry 50.19 (2002): 5458-5462, doi: https://doi.org/10.1021/jf0202584.
  203. Elshamy, Abdelsamed I., et al. "Recent advances in Kaempferia phytochemistry and biological activity: A comprehensive review." Nutrients 11.10 (2019): 2396., doi: https://doi.org/10.3390/nu11102396.
  204. Noratto, Giuliana, et al. "Polyphenolics from peach (Prunus persica var. Rich Lady) inhibit tumor growth and metastasis of MDA-MB-435 breast cancer cells in vivo." The Journal of nutritional biochemistry 25.7 (2014): 796-800, doi: https://doi.org/10.1016/j.jnutbio.2014.03.001.
  205. Kolniak-Ostek, Joanna, et al. "Bioactive compounds and health-promoting properties of pear (Pyrus communis L.) fruits." Molecules 25.19 (2020): 4444., doi: https://doi.org/10.3390/molecules25194444.
  206. Peña, Fabiola, et al. "Bioactive Compounds and Antioxidant Activity in the Fruit of Rosehip (Rosa canina L. and Rosa rubiginosa L.)." Molecules 28.8 (2023): 3544. https://doi.org/10.3390/molecules28083544
  207. Kshatriya, Dushyant, et al. "Phenolic-enriched raspberry fruit extract (Rubus idaeus) resulted in lower weight gain, increased ambulatory activity, and elevated hepatic lipoprotein lipase and heme oxygenase-1 expression in male mice fed a high-fat diet." Nutrition Research 68 (2019): 19-33, doi: https://doi.org/10.1016/j.nutres.2019.05.005.
  208. Chen, Liping, et al. "Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine." Journal of ethnopharmacology 257 (2020): 112829. https://doi.org/10.1016/j.jep.2020.112829
  209. Hong, Yun-Jung, and Ki-Sook Yang. "Anti-inflammatory activities of crocetin derivatives from processed Gardenia jasminoides." Archives of pharmacal research 36 (2013): 933-940, doi: https://doi.org/10.1007/s12272-013-0128-0.
  210. Xiao, Wenping, et al. "Chemistry and bioactivity of Gardenia jasminoides." Journal of food and drug analysis 25.1 (2017): 43-61, doi: https://doi.org/10.1016/j.jfda.2016.11.005.
  211. Lee, Je-Hyuk, Dong-Ung Lee, and Choon-Sik Jeong. "Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats." Food and Chemical Toxicology 47.6 (2009): 1127-1131, doi: https://doi.org/10.1016/j.fct.2009.01.037.
  212. Zhang, Hai-yan, et al. "Antithrombotic activities of aqueous extract from Gardenia jasminoides and its main constituent." Pharmaceutical Biology 51.2 (2013): 221-225, doi: https://doi.org/10.3109/13880209.2012.717088.
  213. Nouri, Amrah, and Ali Shafaghatlonbar. "Chemical constituents and antioxidant activity of essential oil and organic extract from the peel and kernel parts of Citrus japonica Thunb.(kumquat) from Iran." Natural product research 30.9 (2016): 1093-1097, doi: https://doi.org/10.1080/14786419.2015.1101692.
  214. Xi, Wanpeng, et al. "Characterization of phenolic profile and antioxidant capacity of different fruit part from lemon (Citrus limon Burm.) cultivars." Journal of food science and technology 54 (2017): 1108-1118, doi: https://doi.org/10.1007/s13197-017-2544-5.
  215. Lopes Campelo, Lidianne Mayra, et al. "Antioxidant activity of Citrus limon essential oil in mouse hippocampus." Pharmaceutical biology 49.7 (2011): 709-715, doi: https://doi.org/10.3109/13880209.2010.541924.
  216. Imeneo, Valeria, et al. "Green-sustainable extraction techniques for the recovery of antioxidant compounds from “citrus Limon” by-products." Journal of Environmental Science and Health, Part B 57.3 (2022): 220-232, doi: https://doi.org/10.1080/03601234.2022.2046993.
  217. Loizzo, Monica Rosa, et al. "Chemical profile and antioxidant properties of extracts and essential oils from Citrus× limon (L.) burm. Cv. Femminello comune." Chemistry & biodiversity 13.5 (2016): 571-581, doi: https://doi.org/10.1002/cbdv.201500186.
  218. ADhiman, Anju, et al. "In vitro antimicrobial status of methanolic extract of Citrus sinensis Linn. fruit peel." Chronicles of Young Scientists 3.3 (2012): 204-204, doi: https://doi.org/10.4103/2229-5186.99573.
  219. Velázquez-Nuñez, Maria José, et al. "Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact." Food Control 31.1 (2013): 1-4. doi: https://doi.org/10.1016/j.foodcont.2012.09.029.
  220. Romdhane, Mariem Haj, et al. "Optimization of extraction with salicylic acid, rheological behavior and antiproliferative activity of pectin from Citrus sinensis peels." International Journal of Biological Macromolecules 159 (2020): 547-556, doi: https://doi.org/10.1016/j.ijbiomac.2020.05.125.
  221. Jorge, Neuza, Ana Carolina da Silva, and Caroline PM Aranha. "Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds." Anais da Academia Brasileira de Ciências 88 (2016): 951-958, doi: https://doi.org/10.1590/0001-3765201620140562.
  222. Hu, Haijuan, Shanshan Zhang, and Siyi Pan. "Characterization of citrus pectin oligosaccharides and their microbial metabolites as modulators of immunometabolism on macrophages." Journal of Agricultural and Food Chemistry 69.30 (2021): 8403-8414, doi: https://doi.org/10.1021/acs.jafc.1c01445.
  223. Guo, Xiao, et al. "Inhibitory effects of fermented Ougan (Citrus reticulata cv. Suavissima) juice on high-fat diet-induced obesity associated with white adipose tissue browning and gut microbiota modulation in mice." Food & function 12.19 (2021): 9300-9314, doi: https://doi.org/10.1039/d0fo03423a.
  224. Li, Po-Hsien, et al. "In vitro hypoglycemic activity of the phenolic compounds in longan fruit (Dimocarpus Longan var. Fen ke) shell against α-glucosidase and β-galactosidase." International Journal of Food Properties 19.8 (2016): 1786-1797, doi: https://doi.org/10.1080/10942912.2015.1085398.
  225. Su, Meng, et al. "Association between perceived urban built environment attributes and leisure-time physical activity among adults in Hangzhou, China." Preventive medicine 66 (2014): 60-64, doi: https://doi.org/10.1016/j.ypmed.2014.06.001.
  226. Zheng, Jie, et al. "Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau." Food Chemistry 126.3 (2011): 859-865, doi: https://doi.org/10.1016/j.foodchem.2010.11.052.
  227. Wang, Zichao, et al. "Lycium ruthenicum Murray anthocyanins effectively inhibit α-glucosidase activity and alleviate insulin resistance." Food Bioscience 41 (2021): 100949, doi: https://doi.org/10.1016/j.fbio.2021.100949.
  228. Bi, Yingxin, et al. "Molecular and biochemical investigations of the anti-fatigue effects of tea polyphenols and fruit extracts of Lycium ruthenicum Murr. on mice with exercise-induced fatigue." Frontiers in Molecular Biosciences 10 (2023): 1223411, doi: https://doi.org/10.3389/fmolb.2023.1223411.
  229. Chaikul, Puxvadee, et al. "Anti-skin aging activities of green tea (Camelliasinensis (L) Kuntze) in B16F10 melanoma cells and human skin fibroblasts." European Journal of Integrative Medicine 40 (2020): 101212, doi: https://doi.org/10.1016/j.eujim.2020.101212.
  230. Li, Jianlong, et al. "Characterizing the cultivar-specific mechanisms underlying the accumulation of quality-related metabolites in specific Chinese tea (Camellia sinensis) germplasms to diversify tea products." Food Research International (2022): 111824, doi: https://doi.org/10.1016/j.foodres.2022.111824.
  231. Kääriäinen, Tiina M., et al. "Lack of robust protective effect of quercetin in two types of 6-hydroxydopamine-induced parkinsonian models in rats and dopaminergic cell cultures." Brain research 1203 (2008): 149-159, doi: https://doi.org/10.1016/j.brainres.2008.01.089.
  232. Liu, Zhibin, et al. "A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation." Journal of Food Composition and Analysis 86 (2020): 103385, doi: https://doi.org/10.1016/j.jfca.2019.103385.
  233. Otake, S., et al. "Anticaries effects of polyphenolic compounds from Japanese green tea." Caries research 25.6 (1991): 438-443, doi: https://doi.org/10.1159/000261407.
  234. Sharma, Ranjana, Ajay Rana, and Sanjay Kumar. "Phytochemical investigation and bioactivity studies of flowers obtained from different cultivars of Camellia sinensis plant." Natural Product Research 36.8 (2022): 2166-2170, doi: https://doi.org/10.1080/14786419.2020.1844696.
  235. Kao, Y-T., M-J. Lu, and Chinshuh Chen. "Preliminary analyses of phenolic compounds and antioxidant activities in tea pollen extracts." Journal of Food and Drug Analysis 19.4 (2011): 3, doi: https://doi.org/10.38212/2224-6614.2177.
  236. Aneja, Rajesh, et al. "Theaflavin, a black tea extract, is a novel anti-inflammatory compound." Critical care medicine 32.10 (2004): 2097-2103, doi: https://doi.org/10.1097/01.ccm.0000142661.73633.15.
  237. Zhao, Tiantian, et al. "Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology." Molecules 27.12 (2022): 3909. https://doi.org/10.3390/molecules27123909
  238. Zemmouri, Hanene, et al. "Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model." Pharmaceutical biology 55.1 (2017): 1561-1568., doi: https://doi.org/10.1080/13880209.2017.1310905.
  239. Peyvandi, Ali, et al. "Urtica dioica Extract Leads to Cyst Reduction, Enhanced Cell-Mediated Immune Response, and Antioxidant Activity in Experimental Toxoplasmosis." Acta Parasitologica 68.4 (2023): 880-890. doi: https://doi.org/10.1007/s11686-023-00727-5.
  240. Namazi, Fatemeh, et al. "Protective effect of Urtica dioica leaf hydro alcoholic extract against experimentally-induced atherosclerosis in rats." Avicenna Journal of Phytomedicine 8.3 (2018): 254. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987440/
  241. Gülçin, Ilhami, et al. "Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.)." Journal of ethnopharmacology 90.2-3 (2004): 205-215. doi: https://doi.org/10.1016/j.jep.2003.09.028.
  242. Kianbakht, Saeed, Farahnaz Khalighi-Sigaroodi, and Fataneh Hashem Dabaghian. "Improved glycemic control in patients with advanced type 2 diabetes mellitus taking Urtica dioica leaf extract: a randomized double-blind placebo-controlled clinical trial." Clin Lab 59.9-10 (2013): 1071-6, doi: https://doi.org/10.7754/clin.lab.2012.121019.
  243. Tahri, Abdelhafid, et al. "Acute diuretic, natriuretic and hypotensive effects of a continuous perfusion of aqueous extract of Urtica dioica in the rat." Journal of Ethnopharmacology 73.1-2 (2000): 95-100, doi: https://doi.org/10.1016/s0378-8741(00)00270-1.
  244. Van Der Bijl, P., et al. "Diffusion of two potential anti-HIV microbicides across intact and de-epithelialised, human vaginal mucosa." European Journal of Inflammation 6.1 (2008): 17-23, doi: https://doi.org/10.1177/1721727x0800600103.
  245. Balzarini, Jan. "Targeting the glycans of gp120: a novel approach aimed at the Achilles heel of HIV." The Lancet infectious diseases 5.11 (2005): 726-731, doi: https://doi.org/10.1016/s1473-3099(05)70271-1.
  246. Boccalandro, Hernán E., et al. "Melatonin levels, determined by LC‐ESI‐MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits." Journal of Pineal Research 51.2 (2011): 226-232, doi: https://doi.org/10.1111/j.1600-079x.2011.00884.x.
  247. Pirinççioğlu, Mihdiye, et al. "Protective effect of Öküzgözü (Vitis vinifera L. cv.) grape juice against carbon tetrachloride induced oxidative stress in rats." Food & function 3.6 (2012): 668-673, doi: https://doi.org/10.1039/c2fo30024a.
  248. Lu, Jing Nan, et al. "Anthocyanins from the fruit of Vitis coignetiae Pulliat potentiate the cisplatin activity by inhibiting PI3K/Akt signaling pathways in human gastric cancer cells." Journal of Cancer Prevention 20.1 (2015): 50, doi: https://doi.org/10.15430/jcp.2015.20.1.50.
  249. Sivapalan, Sreewardhini, et al. "Evaluation of the anti-inflammatory and antioxidant properties and isolation and characterization of a new bioactive compound, 3, 4, 9-trimethyl-7-propyldecanoic acid from Vitex negundo." Journal of Ethnopharmacology 319 (2024): 117314. https://doi.org/10.1016/j.jep.2023.117314
  250. Bhatti, Haq Nawaz, Fawad Zafar, and Muhammad Asghar Jamal. "Evaluation of phenolic contents and antioxidant potential of methanolic extracts of green cardamom (Elettaria cardamomum)." Asian Journal of Chemistry 22.6 (2010): 4787. https://www.researchgate.net/profile/Fawad-Zafar/publication/204238633_Evaluation_of_Phenolic_Contents_and_Antioxidant_Potential_of_Methanolic_Extracts_of_Green_Cardamom_Elettaria_cardamomum/links/0c96052d4e6b7d6415000000/Evaluation-of-Phenolic-Contents-and-Antioxidant-Potential-of-Methanolic-Extracts-of-Green-Cardamom-Elettaria-cardamomum.pdf
  251. Prakash, Jamuna. "Chemical composition and antioxidant properties of ginger root (Zingiber officinale)." Journal of Medicinal Plants Research 4.24 (2010): 2674-2679. https://www.researchgate.net/profile/Jamuna-Prakash/publication/228476601_Chemical_composition_and_antioxidant_properties_of_ginger_root_Zingiber_officinale/links/54de43dc0cf2966637858fe5/Chemical-composition-and-antioxidant-properties-of-ginger-root-Zingiber-officinale.pdf
  252. Anosike, Chioma A., et al. "Anti-inflammatory and anti-ulcerogenic activity of the ethanol extract of ginger (Zingiber officinale)." African journal of biochemistry research 3.12 (2009): 379-384, doi: https://doi.org/10.5897/ajbr.9000025.
  253. Vishwakarma, S. L., et al. "Anxiolytic and antiemetic activity of Zingiber officinale." Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 16.7 (2002): 621-626, doi: https://doi.org/10.1002/ptr.948.
  254. Parhiz, Hamideh, et al. "Antioxidant and anti‐inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models." Phytotherapy research 29.3 (2015): 323-331, doi: https://doi.org/10.1002/ptr.5256.
  255. Xavier, S. M., et al. "Vitamin C antioxidant effects in hippocampus of adult Wistar rats after seizures and status epilepticus induced by pilocarpine." Neuroscience letters 420.1 (2007): 76-79, doi: https://doi.org/10.1016/j.neulet.2007.04.056.
  256. Rahman, Md Atiqur, et al. "Analgesic and cytotoxic activities of Jasminum sambac (L.) Aiton." Pharmacologyonline 1.1 (2011): 2011. https://www.researchgate.net/profile/Md-Rahman-607/publication/236878413_Analgesic_and_cytotoxic_activities_of_Jasminum_sambac_L_Aiton/links/54c886e10cf238bb7d0deafd/Analgesic-and-cytotoxic-activities-of-Jasminum-sambac-L-Aiton.pdf
  257. Fitrianda, E. K. A., et al. "Antidiabetic activity of extract, fractions, and asiaticoside compound isolated from Centella asiatica Linn. Leaves in alloxan-induced diabetic mice." Asian Journal of Pharmaceutical and Clinical Research (2017): 268-272, doi: https://doi.org/10.22159/ajpcr.2017.v10i10.20419.
  258. Cavalcanti, Josenilda Malveira, et al. "The essential oil of Croton zehntneri and trans-anethole improves cutaneous wound healing." Journal of ethnopharmacology 144.2 (2012): 240-247, doi: https://doi.org/10.1016/j.jep.2012.08.030.
  259. Andallu, B., and C. U. Rajeshwari. "Aniseeds (Pimpinella anisum L.) in health and disease." Nuts and seeds in health and disease prevention. Academic Press, 2011. 175-181. https://doi.org/10.1016/B978-0-12-375688-6.10020-9
  260. Basumatary, Khusbu, et al. "Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar based nanocomposite films for antimicrobial food packaging." Food packaging and shelf life 17 (2018): 99-106, doi: https://doi.org/10.1016/j.fpsl.2018.06.003.
  261. Okoegwale, E. E., and J. U. Omefezi. "Some herbal preparations among the people of Isoko Clan of Delta State, Nigeria." J Appl Sci 4 (2001): 2350-2371.
  262. Chanda, Sumitra, and Mital Kaneria. "Indian nutraceutical plant leaves as a potential source of natural antimicrobial agents." Science against microbial pathogens: communicating current research and technological advances 2 (2011): 1251-1259. https://www.academia.edu/download/43105899/548292680cf2f5dd63a89dec.pdf
  263. Jain, Chitra, Shivani Khatana, and Rekha Vijayvergia. "Bioactivity of secondary metabolites of various plants: a review." Int. J. Pharm. Sci. Res 10.2 (2019): 494-504. https://www.researchgate.net/profile/Chitra-Jain-2/publication/334807518_BIOACTIVITY_OF_SECONDARY_METABOLITES_OF_VARIOUS_PLANTS_A_REVIEW/links/5d41b62b299bf1995b5b563d/BIOACTIVITY-OF-SECONDARY-METABOLITES-OF-VARIOUS-PLANTS-A-REVIEW.pdf
  264. Focho, D. A., et al. "Diversity of plants used to treat respiratory diseases in Tubah, northwest region, Cameroon." African Journal of pharmacy and pharmacology 3.11 (2009): 573-580, doi: https://doi.org/10.5897/ajpp.9000098.
  265. Kasote, Deepak M., et al. "Significance of antioxidant potential of plants and its relevance to therapeutic applications." International journal of biological sciences 11.8 (2015): 982, doi: https://doi.org/10.7150/ijbs.12096.
  266. Khandker, Shahad S., et al. "Elachi lemon (citrus limon) peel and pulp: antioxidant, antimicrobial, anticoagulant activities, bioactive compounds, minerals, and heavy metals." Current Bioactive Compounds 17.6 (2021): 47-58, doi: https://doi.org/10.2174/1573407215999201005164239.
  267. Papoutsis, Konstantinos, et al. "Impact of different solvents on the recovery of bioactive compounds and antioxidant properties from lemon (Citrus limon L.) pomace waste." Food science and biotechnology 25 (2016): 971-977, doi: https://doi.org/10.1007/s10068-016-0158-8.
  268. Nasri, Hamid, and Mahmoud Rafieian-Kopaei. "Kidney tubular cell protection; recent findings." Iranian Journal of Pediatrics 24.6 (2014): 781-783. https://brieflands.com/articles/ijp-571.pdf
  269. Gref, R., et al. "Vitamin C–squalene bioconjugate promotes epidermal thickening and collagen production in human skin." Scientific reports 10.1 (2020): 16883, doi: https://doi.org/10.1038/s41598-020-72704-1.
  270. Boo, Yong Chool. "Ascorbic acid (vitamin C) as a cosmeceutical to increase dermal collagen for skin antiaging purposes: Emerging combination therapies." Antioxidants 11.9 (2022): 1663, doi: https://doi.org/10.3390/antiox11091663.
  271. Loizzo, Monica R., et al. "Prunus persica var. platycarpa (Tabacchiera Peach): bioactive compounds and antioxidant activity of pulp, peel and seed ethanolic extracts." Plant foods for human nutrition 70 (2015): 331-337, doi: https://doi.org/10.1007/s11130-015-0498-1.
  272. Badhani, Bharti, Neha Sharma, and Rita Kakkar. "Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications." Rsc Advances 5.35 (2015): 27540-27557, doi: https://doi.org/10.1039/c5ra01911g.
  273. Bettaieb Rebey, I., et al. "Comparative assessment of phytochemical profiles and antioxidant properties of Tunisian and Egyptian anise (Pimpinella anisum L.) seeds." Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 152.5 (2018): 971-978, doi: https://doi.org/10.1080/11263504.2017.1403394.
  274. Cavia‐Saiz, Monica, et al. "Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study." Journal of the Science of Food and Agriculture 90.7 (2010): 1238-1244, doi: https://doi.org/10.1002/jsfa.3959.
  275. Al-Kurdy, M. J. J. "Hypoglycemic and hypolipidimic effect of naringin in diabetic male rats." Med. Sci 13.1 (2014), doi: https://doi.org/10.29079/vol13iss1art276.
  276. Kim, Sung-Whan, Chae Eun Kim, and Moo Hyun Kim. "Flavonoids inhibit high glucose-induced up-regulation of ICAM-1 via the p38 MAPK pathway in human vein endothelial cells." Biochemical and biophysical research communications 415.4 (2011): 602-607, doi: https://doi.org/10.1016/j.bbrc.2011.10.115.
  277. Yeh, Gloria Y., et al. "Systematic review of herbs and dietary supplements for glycemic control in diabetes." Diabetes care 26.4 (2003): 1277-1294, doi: https://doi.org/10.2337/diacare.26.4.1277.
  278. Benso, Bruna, et al. "Anti-inflammatory, anti-osteoclastogenic and antioxidant effects of Malva sylvestris extract and fractions: in vitro and in vivo studies." PLoS One 11.9 (2016): e0162728, doi: https://doi.org/10.1371/journal.pone.0162728.
  279. Cordell, Geoffrey A. "Changing strategies in natural products chemistry." Phytochemistry 40.6 (1995): 1585-1612 doi: https://doi.org/10.1016/0031-9422(95)00444-c.
  280. Medrano-Jiménez, Elisa, et al. "Malva parviflora extract ameliorates the deleterious effects of a high fat diet on the cognitive deficit in a mouse model of Alzheimer’s disease by restoring microglial function via a PPAR-γ-dependent mechanism." Journal of neuroinflammation 16 (2019): 1-26, doi: https://doi.org/10.1186/s12974-019-1515-3.
  281. Bianchi, Vittorio Emanuele. "Weight loss is a critical factor to reduce inflammation." Clinical nutrition ESPEN 28 (2018): 21-35, doi: https://doi.org/10.1016/j.clnesp.2018.08.007.
  282. Laluces, Hanna Mae C., et al. "Antimicrobial alkaloids from the leaves of Pandanus amaryllifolius." Journal of Applied Pharmaceutical Science 5.10 (2015): 151-153, doi: https://doi.org/10.7324/japs.2015.501026.
  283. Takayama, Hiromitsu, et al. "Structure characterization, biomimetic total synthesis, and optical purity of two new pyrrolidine alkaloids, pandamarilactonine-A and-B, isolated from Pandanus amaryllifolius Roxb." Journal of the American Chemical Society 122.36 (2000): 8635-8639, doi: https://doi.org/10.1021/ja0009929.
  284. Bungihan, Melfei E., et al. "Bioactive metabolites of Diaporthe sp. P133, an endophytic fungus isolated from Pandanus amaryllifolius." Journal of Natural Medicines 65 (2011): 606-609, doi: https://doi.org/10.1007/s11418-011-0518-x.
  285. Suwannakul, Suttipalin, Plykaeow Chaibenjawong, and Suttasinee Suwannakul. "Antioxidant anti-cancer and antimicrobial activities of ethanol Pandanus amaryllifolius Roxb. leaf extract (in vitro)-A potential medical application." Journal of International Dental and Medical Research 11.2 (2018): 383-389. http://www.jidmr.com/journal/wp-content/uploads/2018/09/4D17_518-Layout.pdf
  286. Ullah, Asad, et al. "Important flavonoids and their role as a therapeutic agent." Molecules 25.22 (2020): 5243.doi: https://doi.org/10.3390/molecules25225243.
  287. Lin, Derong, et al. "An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes." Molecules 21.10 (2016): 1374, doi: https://doi.org/10.3390/molecules21101374.
  288. Kaur, R. A. J. B. I. R., and S. A. R. O. J. Arora. "Alkaloids-important therapeutic secondary metabolites of plant origin." J Crit Rev 2.3 (2015): 1-8. https://e-tarjome.com/storage/btn_uploaded/2020-01-18/1579347205_9114-etarjome%20English.pdf
  289. Panche, Archana N., Arvind D. Diwan, and Sadanandavalli R. Chandra. "Flavonoids: an overview." Journal of nutritional science 5 (2016): e47. doi: https://doi.org/10.1017/jns.2016.41.
  290. Bassoli, Bruna Kempfer, et al. "Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia." Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease 26.3 (2008): 320-328, doi: https://doi.org/10.1002/cbf.1444.
  291. Mostaedi, Rouzbeh, et al. "Prevalence of undiagnosed and inadequately treated type 2 diabetes mellitus, hypertension, and dyslipidemia in morbidly obese patients who present for bariatric surgery." Obesity surgery 24 (2014): 927-935, doi: https://doi.org/10.1007/s11695-014-1196-z.
  292. Nöthlings, Ute, et al. "Intake of vegetables, legumes, and fruit, and risk for all-cause, cardiovascular, and cancer mortality in a European diabetic population." The Journal of nutrition 138.4 (2008): 775-781., doi: https://doi.org/10.1093/jn/138.4.775
Advertisement
Recommended Articles
Research Article
Role of Hydroxychloroquine Therapy in COVID 19 Patients. A Systematic Review and Meta Analysis
...
Published: 30/05/2022
Download PDF
Research Article
Exploring Public Awareness of Eating Disorders Among Adolescents in District Solan: A Study on Anorexia and Bulimia
Published: 30/07/2024
Download PDF
Research Article
Hyperlipidemia is a Risk Factor for Patients Suffering from Thrombophlebitis: A Finding from an Analytical Cross-Sectional Study Conducted in a Medical College in the Foothills of Western Himalayas
Published: 10/10/2022
Download PDF
Original Article
Role of Audits in Helathcare associated Infections
Published: 20/06/2024
Download PDF
Chat on WhatsApp
Flowbite Logo
Najmal Complex,
Opposite Farwaniya,
Kuwait.
Email: kuwait@iarcon.org

Editorial Office:
J.L Bhavan, Near Radison Blu Hotel,
Jalukbari, Guwahati-India
Useful Links
Order Hard Copy
Privacy policy
Terms and Conditions
Refund Policy
Others
About Us
Contact Us
Online Payments
Join as Editor
Join as Reviewer
Subscribe to our Newsletter
Follow us
MOST SEARCHED KEYWORDS
scientific journal
 | 
business journal
 | 
medical journals
 | 
Scientific Journals
 | 
Academic Publisher
 | 
Peer-reviewed Journals
 | 
Open Access Journals
 | 
Impact Factor
 | 
Indexing Services
 | 
Journal Citation Reports
 | 
Publication Process
 | 
Impact factor of journals
 | 
Finding reputable journals for publication
 | 
Submitting a manuscript for publication
 | 
Copyright and licensing of published papers
 | 
Writing an abstract for a research paper
 | 
Manuscript formatting guidelines
 | 
Promoting published research
 | 
Publication in high-impact journals
Copyright © iARCON Internaltional LLP . All Rights Reserved.